Pre-Capture Privacy for Small Vision Sensors

The next wave of micro and nano devices will create a world with trillions of small networked cameras. This will lead to increased concerns about privacy and security. Most privacy preserving algorithms for computer vision are applied after image/video data has been captured. We propose to use privacy preserving optics that filter or block sensitive information directly from the incident light-field before sensor measurements are made, adding a new layer of privacy. In addition to balancing the privacy and utility of the captured data, we address trade-offs unique to miniature vision sensors, such as achieving high-quality field-of-view and resolution within the constraints of mass and volume. Our privacy preserving optics enable applications such as depth sensing, full-body motion tracking, people counting, blob detection and privacy preserving face recognition. While we demonstrate applications on macro-scale devices (smartphones, webcams, etc.) our theory has impact for smaller devices.

[1]  Touradj Ebrahimi,et al.  A framework for the validation of privacy protection solutions in video surveillance , 2010, 2010 IEEE International Conference on Multimedia and Expo.

[2]  Ángel Rodríguez-Vázquez,et al.  Single-Exposure HDR Technique Based on Tunable Balance Between Local and Global Adaptation , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[3]  Giuseppe Valenzise,et al.  Privacy-Enabled Object Tracking in Video Sequences Using Compressive Sensing , 2009, 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance.

[4]  Richard G. Baraniuk,et al.  An Architecture for Compressive Imaging , 2006, 2006 International Conference on Image Processing.

[5]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Shree K. Nayar,et al.  Catadioptric Stereo Using Planar Mirrors , 2001, International Journal of Computer Vision.

[7]  J. Goodman Introduction to Fourier optics , 1969 .

[8]  Grigorios Loukides,et al.  Data utility and privacy protection trade-off in k-anonymisation , 2008, PAIS '08.

[9]  Hyunsung Park,et al.  Toward Wide-Angle Microvision Sensors , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Sanjeev J. Koppal,et al.  Sensor-level privacy for thermal cameras , 2016, 2016 IEEE International Conference on Computational Photography (ICCP).

[11]  Peggy B. Nelson,et al.  Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings , 2001 .

[12]  Anton H. M. Akkermans,et al.  Face recognition with renewable and privacy preserving binary templates , 2005, Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID'05).

[13]  Thomas S. Huang,et al.  Close the loop: Joint blind image restoration and recognition with sparse representation prior , 2011, 2011 International Conference on Computer Vision.

[14]  Touradj Ebrahimi,et al.  Scrambling for Privacy Protection in Video Surveillance Systems , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[15]  A. Wilhelm,et al.  Evaluation of a micro fuel cell as applied to a mobile robot , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[16]  Rin-ichiro Taniguchi,et al.  Anonymous Camera for Privacy Protection , 2014, 2014 22nd International Conference on Pattern Recognition.

[17]  Janusz Konrad,et al.  Towards privacy-preserving activity recognition using extremely low temporal and spatial resolution cameras , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[18]  P. J. Narayanan,et al.  Person De-Identification in Videos , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[19]  Esther Rodriguez-Villegas,et al.  Compressive sensing: From “Compressing while Sampling” to “Compressing and Securing while Sampling” , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[20]  Matthew O'Toole,et al.  Primal-dual coding to probe light transport , 2012, ACM Trans. Graph..

[21]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[22]  Ramesh Raskar,et al.  Coded exposure photography: motion deblurring using fluttered shutter , 2006, SIGGRAPH 2006.

[23]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[24]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[25]  L. Sweeney,et al.  Preserving Privacy by De-identifying Facial Images , 2003 .

[26]  Takeo Kanade,et al.  Computational sensor for visual tracking with attention , 1998, IEEE J. Solid State Circuits.

[27]  Ankur Chattopadhyay,et al.  PrivacyCam: a Privacy Preserving Camera Using uCLinux on the Blackfin DSP , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Michael Elad,et al.  Fast and robust multiframe super resolution , 2004, IEEE Transactions on Image Processing.

[29]  Wayne H. Wolf,et al.  Smart Cameras as Embedded Systems , 2002, Computer.

[30]  Feng Li,et al.  A theory of Coprime Blurred Pairs , 2011, 2011 International Conference on Computer Vision.

[31]  Larry A. Wasserman,et al.  Compressed and Privacy-Sensitive Sparse Regression , 2009, IEEE Transactions on Information Theory.

[32]  Latanya Sweeney,et al.  k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[33]  Bernhard Rinner,et al.  TrustCAM: Security and Privacy-Protection for an Embedded Smart Camera Based on Trusted Computing , 2010, 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[34]  W.B. Heinzelman,et al.  On the coverage problem in video-based wireless sensor networks , 2005, 2nd International Conference on Broadband Networks, 2005..

[35]  Richard E. Korf,et al.  Optimal rectangle packing , 2010, Ann. Oper. Res..

[36]  M. Mrityunjay,et al.  The De-Identification Camera , 2011, 2011 Third National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics.

[37]  Richard G. Baraniuk,et al.  The smashed filter for compressive classification and target recognition , 2007, Electronic Imaging.

[38]  Bradley Malin,et al.  Preserving privacy by de-identifying face images , 2005, IEEE Transactions on Knowledge and Data Engineering.

[39]  Bruce A. Draper,et al.  The CSU Face Identification Evaluation System: Its Purpose, Features, and Structure , 2003, ICVS.

[40]  Ralph Gross,et al.  Semi-supervised learning of multi-factor models for face de-identification , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Markus Dürmuth,et al.  Achieving Anonymity against Major Face Recognition Algorithms , 2013, Communications and Multimedia Security.

[42]  R.S. Fearing,et al.  Dynamometer Power Output Measurements of Miniature Piezoelectric Actuators , 2009, IEEE/ASME Transactions on Mechatronics.

[43]  Paolo Fiorini,et al.  Human++: autonomous wireless sensors for body area networks , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[44]  Shree K. Nayar,et al.  Face swapping: automatically replacing faces in photographs , 2008, SIGGRAPH 2008.

[45]  Sanjeev J. Koppal,et al.  Privacy preserving optics for miniature vision sensors , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Sharmeen Browarek High resolution, low cost, privacy preserving human motion tracking system via passive thermal sensing , 2010 .

[47]  Andrew Blake,et al.  Motion Deblurring and Super-resolution from an Image Sequence , 1996, ECCV.

[48]  Yuning Jiang,et al.  Learning Deep Face Representation , 2014, ArXiv.

[49]  Ming-Hsuan Yang,et al.  Deblurring Face Images with Exemplars , 2014, ECCV.

[50]  Ahmad-Reza Sadeghi,et al.  Efficient Privacy-Preserving Face Recognition , 2009, ICISC.

[51]  Edoardo M. Airoldi,et al.  Integrating Utility into Face De-identification , 2005, Privacy Enhancing Technologies.

[52]  Frédo Durand,et al.  Image and depth from a conventional camera with a coded aperture , 2007, SIGGRAPH 2007.

[53]  Alanson P. Sample,et al.  Design of an RFID-Based Battery-Free Programmable Sensing Platform , 2008, IEEE Transactions on Instrumentation and Measurement.

[54]  Feng Li,et al.  A Coprime Blur Scheme for Data Security in Video Surveillance , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  M. Amaç Güvensan,et al.  On coverage issues in directional sensor networks: A survey , 2011, Ad Hoc Networks.

[56]  Harald Dyckhoff,et al.  A typology of cutting and packing problems , 1990 .

[57]  Seiichi Serikawa,et al.  Development of privacy-preserving sensor for person detection , 2010 .

[58]  Masashi Nishiyama,et al.  Facial Deblur Inference Using Subspace Analysis for Recognition of Blurred Faces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Leonidas J. Guibas,et al.  Optimal Placement and Selection of Camera Network Nodes for Target Localization , 2006, DCOSS.

[60]  Masashi Nishiyama,et al.  Facial deblur inference to improve recognition of blurred faces , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[61]  Christopher Edwards,et al.  The effects of filtered video on awareness and privacy , 2000, CSCW '00.

[62]  Benny Pinkas,et al.  SCiFI - A System for Secure Face Identification , 2010, 2010 IEEE Symposium on Security and Privacy.

[63]  Martin J. Wainwright,et al.  Privacy Aware Learning , 2012, JACM.

[64]  Ángel Rodríguez-Vázquez,et al.  Focal-Plane Sensing-Processing: A Power-Efficient Approach for the Implementation of Privacy-Aware Networked Visual Sensors , 2014, Sensors.

[65]  Shree K. Nayar,et al.  Programmable Imaging: Towards a Flexible Camera , 2006, International Journal of Computer Vision.

[66]  Lei Zhang,et al.  Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization , 2010, IEEE Transactions on Image Processing.

[67]  R. Fergus,et al.  Random Lens Imaging , 2006 .

[68]  Bernhard Rinner,et al.  TrustEYE.M4: Protecting the sensor — Not the camera , 2014, 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[69]  Ren Ng Fourier Slice Photography , 2005 .

[70]  Lee Streeter,et al.  Simple harmonic error cancellation in time of flight range imaging. , 2015, Optics letters.

[71]  Carman Neustaedter,et al.  Blur filtration fails to preserve privacy for home-based video conferencing , 2006, TCHI.

[72]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[73]  Geoffrey L. Barrows,et al.  Wide-angle micro sensors for vision on a tight budget , 2011, CVPR 2011.

[74]  Naveen Verma,et al.  Micropower wireless sensors , 2006 .

[75]  Shree K. Nayar,et al.  Lensless Imaging with a Controllable Aperture , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[76]  Kenro Miyamoto,et al.  Fish Eye Lens , 1964 .

[77]  Stan Sclaroff,et al.  Automated camera layout to satisfy task-specific and floor plan-specific coverage requirements , 2006, Comput. Vis. Image Underst..

[78]  Sing H. Lee Optical Pattern Recognition , 1985, COMPCON.

[79]  Graham A. Jullien,et al.  CMOS image sensor with watermarking capabilities , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[80]  Stefan Katzenbeisser,et al.  Privacy-Preserving Face Recognition , 2009, Privacy Enhancing Technologies.

[81]  Naveen Verma,et al.  Design considerations for ultra-low energy wireless microsensor nodes , 2005, IEEE Transactions on Computers.

[82]  Shree K. Nayar,et al.  Caustics of catadioptric cameras , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.