Origin of morphotropic phase boundaries in ferroelectrics
暂无分享,去创建一个
Russell J. Hemley | Yang Ren | Muhtar Ahart | Maddury Somayazulu | Ho-kwang Mao | Zhigang Wu | H. Mao | R. Hemley | Zhigang Wu | Yang Ren | R. Cohen | M. Ahart | M. Somayazulu | P. Dera | R. E. Cohen | Przemyslaw Dera | P. Ganesh | Peter Liermann | P. Ganesh | P. Liermann | R. E. Cohen | Panchapakesan Ganesh | H. Mao
[1] G. Shirane,et al. Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3 , 2002, cond-mat/0203422.
[2] P. Bouvier,et al. High-pressure phases in highly piezoelectric PbZr0.52Ti0.48O3 , 2003, cond-mat/0309705.
[3] H. Mao,et al. Energy dispersive x-ray diffraction of charge density waves via chemical filtering , 2005 .
[4] U. V. Waghmare,et al. Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO 3 , 1997 .
[5] R. Cohen. Materials science: Relaxors go critical , 2006, Nature.
[6] P. Bouvier,et al. Ferroelectricity of perovskites under pressure. , 2005, Physical review letters.
[7] David J. Singh,et al. Interplay between A -site and B -site driven instabilities in perovskites , 2005 .
[8] H. Kungl,et al. Nanodomain structure of Pb[Zr 1-x Ti x ]O 3 at its morphotropic phase boundary: Investigations from local to average structure , 2007 .
[9] Gonzalo,et al. Pressure dependence of free-energy expansion coefficients in PbTiO3 and BaTiO3 and tricritical-point behavior. , 1990, Physical review. B, Condensed matter.
[10] G. Burns,et al. High-pressure Raman study of zone-center phonons in PbTi O 3 , 1983 .
[11] G. Shirane,et al. Phase diagram of the relaxor ferroelectric Ñ1¿xÖPbÑZn 1'3 Nb 2'3 ÖO 3 -xPbTiO 3 , 2002 .
[12] Guo,et al. Origin of the high piezoelectric response in PbZr1-xTixO3 , 1999, Physical review letters.
[13] Matthieu Verstraete,et al. First-principles computation of material properties: the ABINIT software project , 2002 .
[14] B. Noheda,et al. Phase diagram of the relaxor ferroelectric (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 , 2002 .
[15] V. M. Goldschmidt,et al. Crystal structure and chemical constitution , 1929 .
[16] Ronald E. Cohen,et al. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.
[17] Ronald E. Cohen,et al. Origin of ferroelectricity in perovskite oxides , 1992, Nature.
[18] V. Struzhkin,et al. Raman spectroscopy of metals, high‐temperature superconductors and related materials under high pressure , 2003 .
[19] Raymond Jeanloz,et al. The equation of state of the gold calibration standard , 1984 .
[20] Xavier Gonze,et al. The ABINIT software project , 2001 .
[21] Yu U. Wang,et al. Microstructures of coherent phase decomposition near morphotropic phase boundary in lead zirconate titanate , 2007 .
[22] R. Roth,et al. Piezoelectric Properties of Lead Zirconate‐Lead Titanate Solid‐Solution Ceramics , 1954 .
[23] G. Burns,et al. Raman Studies of Underdamped Soft Modes in PbTi O 3 , 1970 .
[24] H. Mao,et al. Single-domain electromechanical constants for Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 from micro-Brillouin scattering , 2006 .
[25] D. Viehland,et al. Conformal miniaturization of domains with low domain-wall energy: monoclinic ferroelectric states near the morphotropic phase boundaries. , 2003, Physical review letters.
[26] D. Vanderbilt,et al. Monoclinic and triclinic phases in higher-order Devonshire theory , 2000, cond-mat/0009337.
[27] G. Jennings,et al. Diffractometer for high energy X-rays at the APS , 2000 .
[28] Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3 , 2000, cond-mat/0006152.
[29] Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3. , 2005, Physical review letters.