Auslegung von Absorptionskolonnen – Neue Problemstellungen für eine altbekannte Aufgabe

Untersuchungen zur Auslegung von Absorptionskolonnen werden vorgestellt. Ausgehend von der bisher verwendeten Auslegungsmethodik nach Billet und Schultes erfolgt eine Analyse und Bewertung der Grenzen dieser in der Technik haufig verwendeten Vorgehensweise. Dabei werden auf der Grundlage eigener Experimente entsprechende Anderungsvorschlage in der bisherigen Auslegungsweise fur Packungskolonnen beschrieben. Neben der Anpassung einzelner empirischer Gleichungen zur flexiblen Beschreibung des Bereiches zwischen Stau- und Flutpunkt, wird insbesondere die auf der Messung lokaler Prozessgrosen basierende Einteilung in Wand- und Kernphasen der Packungskolonnen vorgeschlagen. This research paper focuses on the design of absorption columns. Based on the Billet-Schultes-Model commonly used for the design of absorption columns, limitations of this design procedure are identified. Model modifications to overcome these limitations are proposed. One the one hand the use of an adapted empirical equation is recommended to describe the hydrodynamic behavior between loading point and flooding point more accurate. On the other hand a more general approach taking into account two different zones in an absorption column, the wall and the core zone are suggested.

[1]  L. Spiegel,et al.  Experimental characterization and modeling of the performance of a large-specific-area high-capacity structured packing , 2007 .

[2]  H. Prasser,et al.  A new electrode-mesh tomograph for gas–liquid flows , 1998 .

[3]  Lihui Peng,et al.  Image reconstruction algorithms for electrical capacitance tomography , 2003 .

[4]  Z. Olujic,et al.  Liquid distribution images on structured packing by X‐ray computed tomography , 2001 .

[5]  Hiroshi Takeuchi,et al.  MASS TRANSFER COEFFICIENTS BETWEEN GAS AND LIQUID PHASES IN PACKED COLUMNS , 1968 .

[6]  Ž. Olujić,et al.  Liquid Distribution Properties of Conventional and High Capacity Structured Packings , 2006 .

[7]  U. Hampel,et al.  Capacitance wire-mesh sensor for fast measurement of phase fraction distributions , 2007 .

[8]  E. Kirschbaum Destillier- und Rektifiziertechnik , 1940 .

[9]  Rajamani Krishna,et al.  Modelling reactive distillation , 2000 .

[10]  Miroslav Jicha,et al.  Miniature conductivity wire-mesh sensor for gas-liquid two-phase flow measurement , 2009 .

[11]  Artin Afacan,et al.  Modelling and Simulation of Flow Maldistribution in Random Packed Columns with Gas-Liquid Countercurrent Flow , 2000 .

[12]  Reinhard Billet,et al.  Predicting mass transfer in packed columns , 1993 .

[13]  James R. Fair,et al.  Generalized correlation for mass transfer in packed distillation columns , 1982 .

[14]  Achim Hoffmann,et al.  Standardization of Mass Transfer Measurements: A Basis for the Description of Absorption Processes , 2007 .

[15]  Ž. Olujić,et al.  Effect of Column Diameter on Pressure Drop of a Corrugated Sheet Structured Packing , 1999 .

[16]  James R. Fair,et al.  General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns , 1989 .

[17]  Uwe Hampel,et al.  A field-focusing imaging sensor for fast visualization of multiphase flows , 2009 .

[18]  R. Billet,et al.  Prediction of Mass Transfer Columns with Dumped and Arranged Packings , 1999 .

[19]  Eugeny Y. Kenig,et al.  Modelling of reactive separation processes: reactive absorption and reactive distillation , 2003 .

[20]  F. J. Zuiderweg,et al.  Radial liquid spread and maldistribution in packed columns under different wetting conditions , 1978 .

[21]  Jerzy Mackowiak,et al.  Fluid Dynamics of Packed Columns , 2010 .

[22]  H. Kryk,et al.  Spatially resolved inline measurement of liquid velocity in trickle bed reactors , 2010 .