Coexisting Glassy Phases with Different Compositions in NFA-Based Bulk Heterojunctions

[1]  H. Sardón,et al.  Polymorphism in Non‐Fullerene Acceptors Based on Indacenodithienothiophene , 2021, Advanced Functional Materials.

[2]  Oskar J. Sandberg,et al.  A History and Perspective of Non‐Fullerene Electron Acceptors for Organic Solar Cells , 2021, Advanced Energy Materials.

[3]  H. Ade,et al.  The Role of Demixing and Crystallization Kinetics on the Stability of Non‐Fullerene Organic Solar Cells , 2020, Advanced materials.

[4]  Thuc‐Quyen Nguyen,et al.  The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells , 2020, Advanced materials.

[5]  G. Frey,et al.  Toward Fast Screening of Organic Solar Cell Blends , 2020, Advanced science.

[6]  Shangfeng Yang,et al.  18% Efficiency organic solar cells. , 2020, Science bulletin.

[7]  W. Ma,et al.  Cold Crystallization Temperature Correlated Phase Separation, Performance, and Stability of Polymer Solar Cells , 2019, Matter.

[8]  Liyan Yu,et al.  Diffusion-Limited Crystallization: A Rationale for the Thermal Stability of Non-Fullerene Solar Cells. , 2019, ACS applied materials & interfaces.

[9]  Yiwang Chen,et al.  Miscibility Tuning for Optimizing Phase Separation and Vertical Distribution toward Highly Efficient Organic Solar Cells , 2019, Advanced science.

[10]  Joshua H. Carpenter,et al.  Delineation of Thermodynamic and Kinetic Factors that Control Stability in Non-fullerene Organic Solar Cells , 2019, Joule.

[11]  E. Katz,et al.  UV-Cross-linkable Donor-Acceptor Polymers Bearing a Photostable Conjugated Backbone for Efficient and Stable Organic Photovoltaics. , 2018, ACS applied materials & interfaces.

[12]  Guodong Zhou,et al.  Hidden Structure Ordering Along Backbone of Fused‐Ring Electron Acceptors Enhanced by Ternary Bulk Heterojunction , 2018, Advanced materials.

[13]  C. Snyder,et al.  Glassy phases in organic semiconductors. , 2018, Current opinion in solid state & materials science.

[14]  Seth R. Marder,et al.  Non-fullerene acceptors for organic solar cells , 2018 .

[15]  Joshua H. Carpenter,et al.  Quantitative relations between interaction parameter, miscibility and function in organic solar cells , 2018, Nature Materials.

[16]  Feng Gao,et al.  Organic solar cells based on non-fullerene acceptors. , 2018, Nature materials.

[17]  Ole Hagemann,et al.  Overcoming the Scaling Lag for Polymer Solar Cells , 2017 .

[18]  G. Frey,et al.  Morphology visualization of P3HT:Fullerene blends by using subsurface atomic layer deposition , 2017 .

[19]  Junxiang Zhang,et al.  Mixing Behavior in Small Molecule:Fullerene Organic Photovoltaics , 2017 .

[20]  Jianqi Zhang,et al.  Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells , 2016, Nature Communications.

[21]  Jianhui Hou,et al.  Highly Efficient Fullerene‐Free Polymer Solar Cells Fabricated with Polythiophene Derivative , 2016, Advanced materials.

[22]  G. Frey,et al.  Mechanism of Metal Oxide Deposition from Atomic Layer Deposition inside Nonreactive Polymer Matrices: Effects of Polymer Crystallinity and Temperature , 2016 .

[23]  Joshua H. Carpenter,et al.  Highly Efficient Organic Solar Cells with Improved Vertical Donor–Acceptor Compositional Gradient Via an Inverted Off‐Center Spinning Method , 2016, Advanced materials.

[24]  H. Ade,et al.  Efficient organic solar cells processed from hydrocarbon solvents , 2016, Nature Energy.

[25]  G. Frey,et al.  Harnessing ALD to directly map the morphology of organic photovoltaic bulk heterojunctions , 2015 .

[26]  C. Müller On the Glass Transition of Polymer Semiconductors and Its Impact on Polymer Solar Cell Stability , 2015 .

[27]  Daoben Zhu,et al.  An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells , 2015, Advanced materials.

[28]  G. Bazan,et al.  Structural Characterization of a Composition Tolerant Bulk Heterojunction Blend , 2014 .

[29]  Meng-Huan Jao,et al.  Additives for morphology control in high-efficiency organic solar cells , 2013 .

[30]  John R. Tumbleston,et al.  On the role of intermixed phases in organic photovoltaic blends , 2013 .

[31]  John R. Tumbleston,et al.  The Importance of Fullerene Percolation in the Mixed Regions of Polymer–Fullerene Bulk Heterojunction Solar Cells , 2013 .

[32]  Ligui Li,et al.  A novel melting behavior of poly(3-alkylthiophene) cocrystals: premelting and recrystallization of component polymers , 2012 .

[33]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[34]  Dennis Nordlund,et al.  P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. , 2011, Nano letters.

[35]  Zhenan Bao,et al.  Effects of Thermal Annealing Upon the Morphology of Polymer–Fullerene Blends , 2010 .

[36]  B. Collins,et al.  Molecular Miscibility of Polymer-Fullerene Blends , 2010 .

[37]  Jean Manca,et al.  Phase diagram of P3HT/PCBM blends and its implication for the stability of morphology. , 2009, The journal of physical chemistry. B.

[38]  Jarvist M. Frost,et al.  Binary Organic Photovoltaic Blends: A Simple Rationale for Optimum Compositions , 2008 .

[39]  David-Wei Zhang,et al.  Atomic Layer Deposition of Hafnium Oxide from Tetrakis(ethylmethylamino)hafnium and Water Precursors , 2007 .

[40]  Richard A. L. Jones,et al.  An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films , 2005, Nature materials.

[41]  Esther Kim,et al.  Atomic Layer Deposition of Hafnium and Zirconium Oxides Using Metal Amide Precursors , 2002 .

[42]  John R. Tumbleston,et al.  Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC71BM Solar Cells , 2013 .

[43]  Craig J. Hawker,et al.  Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend , 2011 .