Filming the invisible – time-resolved visualization of compressible flows
暂无分享,去创建一个
[1] August Joseph Ignaz Toepler,et al. Beobachtungen nach einer neuen optischen Methode : ein Beitrag zur Experimentalphysik , 1906 .
[2] Kazuyoshi Takayama,et al. The formation of a secondary shock wave behind a shock wave diffracting at a convex corner , 1997 .
[3] T. Etoh,et al. Cavitation induced by low-speed underwater impact , 2009 .
[4] Claus-Dieter Ohl,et al. Experimental and Theoretical Bubble Dynamics , 2007 .
[5] S. Ray. Scientific Photography and Applied Imaging , 1999 .
[6] Kazuyoshi Takayama,et al. Laboratory-scale blast wave phenomena – optical diagnostics and applications , 2005 .
[7] H. Kleine,et al. Unsteady flow diagnostics using weak perturbations , 2009 .
[8] H. Schardin,et al. Kinematographie auf ruhendem Film und mit extrem hoher Bildfrequenz , 1929 .
[9] Frank K. Lu,et al. Optical design of Cranz-Schardin cameras , 1997 .
[10] Jean-Michel Desse,et al. Real-time color holographic interferometry devoted to 2D unsteady wake flows , 2004, J. Vis..
[11] H. Schardin. Die Schlierenverfahren und ihre Anwendungen , 1942 .
[12] M. Brouillette,et al. Propagation and interaction of shock-generated vortices , 1997 .
[13] B. W. Skews,et al. The shape of a diffracting shock wave , 1967, Journal of Fluid Mechanics.
[14] B. W. Skews,et al. The perturbed region behind a diffracting shock wave , 1967, Journal of Fluid Mechanics.
[15] J. P. Baird,et al. Supersonic vortex rings , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[16] Kohsei Takehara,et al. High-Speed Imaging of Drops and Bubbles , 2008 .
[17] Gary S. Settles,et al. Optical measurement and scaling of blasts from gram-range explosive charges , 2007 .
[18] P. Krehl,et al. August Toepler — The first who visualized shock waves , 1995 .
[19] K. Takayama,et al. On the ongoing quest to pinpoint the location of RR-MR transition in blast wave reflections , 2009 .
[20] G. Meier,et al. An electronic Cranz–Schardin camera , 1991 .
[21] Eadweard Muybridge,et al. Animals in Motion , 1957 .
[22] G. Settles. Schlieren and shadowgraph techniques , 2001 .
[23] John M. Dewey,et al. An experimental investigation of the sonic criterion for transition from regular to Mach reflection of weak shock waves , 1989 .
[24] John M. Dewey,et al. Chapter 13.1 - Spherical Shock Waves: 13.1 Expanding Spherical Shocks (Blast Waves) , 2001 .
[25] Kazuyoshi Takayama,et al. Simultaneous Shadow, Schlieren and Interferometric Visualization of Compressible Flows , 2006 .
[26] Kazuyoshi Takayama,et al. Studies of the TNT equivalence of silver azide charges , 2003 .
[27] B. Schmitz,et al. How snapping shrimp snap: through cavitating bubbles. , 2000, Science.
[28] Wolfgang Merzkirch,et al. 3 – Optical Flow Visualization , 1987 .
[29] N. de Haas,et al. Experimental Study of the Formation of a Vortex Ring at the Open End of a Cylindrical Shock Tube , 1952 .
[30] Harald Kleine. Chapter 5.1 - Measurement Techniques and Diagnostics: 5.1 Flow Visualization , 2001 .
[31] Kohsei Takehara,et al. Time-resolved visualization of shock–vortex systems emitted from an open shock tube , 2010, J. Vis..
[32] Harald Kleine,et al. Flow features resulting from shock wave impact on a cylindrical cavity , 2007, Journal of Fluid Mechanics.
[33] Gary S. Settles,et al. Schlieren imaging of loud sounds and weak shock waves in air near the limit of visibility , 2010 .
[34] H. Maruyama,et al. High-speed time-resolved color schlieren visualization of shock wave phenomena , 2005 .