Quantum spectral analysis: frequency in time, with applications to signal and image processing

A quantum time-dependent spectrum analysis, or simply, quantum spectral analysis (QSA) is presented in this work, and it's based on Schrodinger equation, which is a partial differential equation that describes how the quantum state of a non-relativistic physical system changes with time. In classic world is named frequency in time (FIT), which is presented here in opposition and as a complement of traditional spectral analysis frequency-dependent based on Fourier theory. Besides, FIT is a metric, which assesses the impact of the flanks of a signal on its frequency spectrum, which is not taken into account by Fourier theory and even less in real time. Even more, and unlike all derived tools from Fourier Theory (i.e., continuous, discrete, fast, short-time, fractional and quantum Fourier Transform, as well as, Gabor) FIT has the following advantages: a) compact support with excellent energy output treatment, b) low computational cost, O(N) for signals and O(N 2) for images, c) it does not have phase uncertainties (indeterminate phase for magnitude = 0) as Discrete and Fast Fourier Transform (DFT, FFT, respectively), d) among others. In fact, FIT constitutes one side of a triangle (which from now on is closed) and it consists of the original signal in time, spectral analysis based on Fourier Theory and FIT. Thus a toolbox is completed, which it is essential for all applications of Digital Signal Processing (DSP) and Digital Image Processing (DIP); and, even, in the latter, FAT allows edge detection (which is called flank detection in case of signals), denoising, despeckling, compression, and superresolution of still images. Such applications include signals intelligence and imagery intelligence. On the other hand, we will present other DIP tools, which are also derived from the Schrodinger equation. Besides, we discuss several examples for spectral analysis, edge detection, denoising, despeckling, compression and superresolution in a set of experimental results in an important section on Applications and Simulations, respectively. Finally, we finish this work with special section dedicated to Conclusions.

[1]  E. Condon,et al.  Immersion of the Fourier Transform in a Continuous Group of Functional Transformations. , 1937, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[3]  Rangachar Kasturi,et al.  Machine vision , 1995 .

[4]  Martin Vetterli,et al.  Spatially adaptive wavelet thresholding with context modeling for image denoising , 2000, IEEE Trans. Image Process..

[5]  Minh N. Do,et al.  Image interpolation using multiscale geometric representations , 2007, Electronic Imaging.

[6]  Kaoru Hirota,et al.  A flexible representation of quantum images for polynomial preparation, image compression, and processing operations , 2011, Quantum Inf. Process..

[7]  N. Wiener Hermitian Polynomials and Fourier Analysis , 1929 .

[8]  Ingrid Daubechies Different Perspectives on Wavelets , 2016 .

[9]  Mario Mastriani,et al.  Enhanced Directional Smoothing Algorithm for Edge-Preserving Smoothing of Synthetic-Aperture Radar Images , 2016, ArXiv.

[10]  Kai Xu,et al.  A novel quantum representation for log-polar images , 2013, Quantum Information Processing.

[11]  K. Rao,et al.  Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations , 2006 .

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[14]  Paola Cappellaro,et al.  Time-optimal control by a quantum actuator , 2015 .

[15]  Mario Mastriani Denoising based on wavelets and deblurring via self-organizing map for Synthetic Aperture Radar images , 2016, ArXiv.

[16]  N. Gisin,et al.  Quantum cryptography , 1998 .

[17]  Iain E. G. Richardson,et al.  H.264 and MPEG-4 Video Compression: Video Coding for Next-Generation Multimedia , 2003 .

[18]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[19]  John Miano,et al.  Compressed image file formats - JPEG, PNG, GIF, XBM, BMP , 1999 .

[20]  Chao Lu,et al.  Mathematics of Multidimensional Fourier Transform Algorithms , 1993 .

[21]  E. Martin Novel method for stride length estimation with body area network accelerometers , 2011, 2011 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems.

[22]  H. Fan,et al.  Optical transformation from chirplet to fractional Fourier transformation kernel , 2009, 0902.1800.

[23]  Pierre Duhamel,et al.  Polynomial transform computation of the 2-D DCT , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[24]  Mario Mastriani,et al.  Single Frame Supercompression of Still Images,Video, High Definition TV and Digital Cinema , 2010 .

[25]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[26]  Pierre Moulin,et al.  Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients , 2001, IEEE Trans. Image Process..

[27]  Peter D. Welch,et al.  Historical notes on the fast Fourier transform , 1967 .

[28]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[29]  Mario Mastriani,et al.  Kalman's shrinkage for wavelet-based despeckling of SAR images , 2008, ArXiv.

[30]  Toshiro Kawahara,et al.  Sparse super-resolution reconstructions of video from mobile devices in digital TV broadcast applications , 2006, SPIE Optics + Photonics.

[31]  Yonina C. Eldar Quantum signal processing , 2002, IEEE Signal Process. Mag..

[32]  Eric L. Miller,et al.  Wavelet domain image restoration with adaptive edge-preserving regularization , 2000, IEEE Trans. Image Process..

[33]  Václav Simek,et al.  GPU Acceleration of 2D-DWT Image Compression in MATLAB with CUDA , 2008, 2008 Second UKSIM European Symposium on Computer Modeling and Simulation.

[34]  H. Chipman,et al.  Adaptive Bayesian Wavelet Shrinkage , 1997 .

[35]  James T. Townsend,et al.  Quantum dynamics of human decision-making , 2006 .

[36]  Don H. Johnson,et al.  Gauss and the history of the fast Fourier transform , 1984, IEEE ASSP Magazine.

[37]  Martin Vetterli,et al.  Fast 2-D discrete cosine transform , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[38]  Farhad Kamangar,et al.  Fast Algorithms for the 2-D Discrete Cosine Transform , 1982, IEEE Transactions on Computers.

[39]  Edward H. Adelson,et al.  Noise removal via Bayesian wavelet coring , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[40]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[41]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[42]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[43]  Mario Mastriani,et al.  Neural shrinkage for wavelet-based SAR despeckling , 2016, ArXiv.

[44]  P. Benioff Quantum mechanical hamiltonian models of turing machines , 1982 .

[45]  Ran Tao,et al.  Sampling and Sampling Rate Conversion of Band Limited Signals in the Fractional Fourier Transform Domain , 2008, IEEE Transactions on Signal Processing.

[46]  MUNSI ALAUL HAQUE,et al.  A two-dimensional fast cosine transform , 1985, IEEE Trans. Acoust. Speech Signal Process..

[47]  V. Namias The Fractional Order Fourier Transform and its Application to Quantum Mechanics , 1980 .

[48]  Daniel R. Simon On the Power of Quantum Computation , 1997, SIAM J. Comput..

[49]  Seong-Geun Kwon,et al.  Multispectral Image Data Compression Using Classified Prediction and KLT in Wavelet Transform Domain , 2002 .

[50]  H. De Bie,et al.  Fourier transform and related integral transforms in superspace , 2008, 0805.1918.

[51]  Kai Lu,et al.  NEQR: a novel enhanced quantum representation of digital images , 2013, Quantum Information Processing.

[52]  V. Jeoti,et al.  A wavelet footprints-based compression scheme for ECG signals , 2004, 2004 IEEE Region 10 Conference TENCON 2004..

[53]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[54]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[55]  R. Tolimieri,et al.  Algorithms for Discrete Fourier Transform and Convolution , 1989 .

[56]  Hua Zhang,et al.  Novel image encryption/decryption based on quantum Fourier transform and double phase encoding , 2013, Quantum Inf. Process..

[57]  Yu-Len Huang,et al.  Wavelet-based image interpolation using multilayer perceptrons , 2005, Neural Computing & Applications.

[58]  Mario Mastriani,et al.  Fast Cosine Transform to increase speed-up and efficiency of Karhunen-Loeve Transform for lossy image compression , 2010, ArXiv.

[59]  R. R. Clarke Transform coding of images , 1985 .

[60]  Arthur Robert Weeks,et al.  The Pocket Handbook of Image Processing Algorithms In C , 1993 .

[61]  Jack J. Dongarra,et al.  Guest Editors Introduction to the top 10 algorithms , 2000, Comput. Sci. Eng..

[62]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[63]  Jie Liu Shannon wavelet spectrum analysis on truncated vibration signals for machine incipient fault detection , 2012 .

[64]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[65]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[66]  Nicolas C. Pégard,et al.  Optimizing holographic data storage using a fractional Fourier transform. , 2011, Optics letters.

[67]  T. Felbinger,et al.  Lossless quantum data compression and variable-length coding , 2001, quant-ph/0105026.

[68]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[69]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[70]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[71]  David P. DiVincenzo,et al.  Quantum Computing: A Short Course from Theory to Experiment , 2004 .

[72]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[73]  R. Schützhold,et al.  Pattern recognition on a quantum computer , 2003 .

[74]  Qingxin Zhu,et al.  Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases , 2014, Inf. Sci..

[75]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[76]  Jonathan V. Sweedler,et al.  Celebrating the 75th anniversary of the ACS Division of Analytical Chemistry: a special collection of the most highly cited analytical chemistry papers published between 1938 and 2012. , 2013, Analytical chemistry.

[77]  Yu-Guang Yang,et al.  Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding , 2014, Inf. Sci..

[78]  Rajesh Hingorani,et al.  Multispectral KLT-wavelet data compression for Landsat thematic mapper images , 1992, Data Compression Conference, 1992..

[79]  Andreas Klappenecker,et al.  Engineering functional quantum algorithms , 2003 .

[80]  Andrew G. Tescher,et al.  Practical transform coding of multispectral imagery , 1995, IEEE Signal Process. Mag..

[81]  Qiaoyan Wen,et al.  A Quantum Watermark Protocol , 2013 .

[82]  Martin Vetterli,et al.  Spatial adaptive wavelet thresholding for image denoising , 1997, Proceedings of International Conference on Image Processing.

[83]  Din-Chang Tseng,et al.  A wavelet-based multiresolution edge detection and tracking , 2005, Image Vis. Comput..

[84]  David Salesin,et al.  Wavelets for computer graphics: theory and applications , 1996 .

[85]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[86]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[87]  Xiao-Ping Zhang,et al.  Thresholding neural network for adaptive noise reduction , 2001, IEEE Trans. Neural Networks.

[88]  Mario Mastriani,et al.  Denoising and compression in wavelet domain via projection onto approximation coefficients , 2009, ArXiv.

[89]  Prasanta K. Panigrahi,et al.  Quantum Image Representation Through Two-Dimensional Quantum States and Normalized Amplitude , 2013, ArXiv.

[90]  Yi Zhang,et al.  FLPI: representation of quantum images for log-polar coordinate , 2013, Other Conferences.

[91]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[92]  Sang Uk Lee,et al.  A fast algorithm for 2-D DCT , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[93]  Hui Chen,et al.  A watermark strategy for quantum images based on quantum fourier transform , 2012, Quantum Information Processing.

[94]  C. K. Yuen,et al.  Digital Filters , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[95]  Mario Mastriani Systholic Boolean Orthonormalizer Network in Wavelet Domain for Microarray Denoising , 2008 .

[96]  A. Savitzky A Historic Collaboration , 1989 .

[97]  Sougato Bose,et al.  Storing, processing, and retrieving an image using quantum mechanics , 2003, SPIE Defense + Commercial Sensing.

[98]  R. Feynman Simulating physics with computers , 1999 .

[99]  Don H. Johnson,et al.  Gauss and the history of the fast Fourier transform , 1985 .

[100]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[101]  A. Vlasov Quantum Computations and Images Recognition , 1997, quant-ph/9703010.

[102]  Masahide Sasaki,et al.  Quantum Data Compression (Invited Talk) , 2003, SAGA.

[103]  C. Lanczos,et al.  Some improvements in practical Fourier analysis and their application to x-ray scattering from liquids , 1942 .

[104]  Robert L. Stevenson,et al.  Image Sequence Processing , 2015 .

[105]  Gilbert Strang,et al.  The Discrete Cosine Transform , 1999, SIAM Rev..

[106]  Jianhong Shen THE ZEROS OF THE DAUBECHIES POLYNOMIALS , 2007 .

[107]  James F. Blinn,et al.  What's that deal with the DCT? , 1993, IEEE Computer Graphics and Applications.

[108]  Langis Gagnon,et al.  Speckle noise reduction of airborne SAR images with symmetric Daubechies wavelets , 1996, Defense, Security, and Sensing.

[109]  Pierre Duhamel,et al.  A DCT chip based on a new structured and computationally efficient DCT algorithm , 1990, IEEE International Symposium on Circuits and Systems.

[110]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[111]  Mario Mastriani New wavelet-based superresolution algorithm for speckle reduction in SAR images , 2016, ArXiv.

[112]  Shawn Hunt,et al.  Fast piecewise linear predictors for lossless compression of hyperspectral imagery , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[113]  Ayush Bhandari,et al.  Sampling and Reconstruction of Sparse Signals in Fractional Fourier Domain , 2010, IEEE Signal Processing Letters.

[114]  Abdullah M. Iliyasu,et al.  Strategies for designing geometric transformations on quantum images , 2011, Theor. Comput. Sci..

[115]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[116]  C. Burrus,et al.  Noise reduction using an undecimated discrete wavelet transform , 1996, IEEE Signal Processing Letters.

[117]  C. Burrus,et al.  Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .

[118]  Mario Mastriani Quantum Boolean image denoising , 2015, Quantum Inf. Process..

[119]  Luís B. Almeida,et al.  The fractional Fourier transform and time-frequency representations , 1994, IEEE Trans. Signal Process..

[120]  Jin Jiang,et al.  Time-frequency feature representation using energy concentration: An overview of recent advances , 2009, Digit. Signal Process..

[121]  Bo Sun,et al.  Assessing the similarity of quantum images based on probability measurements , 2012, 2012 IEEE Congress on Evolutionary Computation.

[122]  Kannan Ramchandran,et al.  Low-complexity image denoising based on statistical modeling of wavelet coefficients , 1999, IEEE Signal Processing Letters.

[123]  Elizabeth Zubritsky,et al.  Top 10 Articles. , 2000 .

[124]  G.S. Moschytz,et al.  Practical fast 1-D DCT algorithms with 11 multiplications , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[125]  Xiao-Ping Zhang,et al.  Adaptive denoising based on SURE risk , 1998, IEEE Signal Processing Letters.

[126]  Lijiang Chen,et al.  SQR: a simple quantum representation of infrared images , 2014, Quantum Information Processing.

[127]  Jungwoo Lee Optimized quadtree for Karhunen-Loeve transform in multispectral image coding , 1999, IEEE Trans. Image Process..

[128]  Ali N. Akansu,et al.  Emerging applications of wavelets: A review , 2010, Phys. Commun..

[129]  Qingxin Zhu,et al.  Image storage, retrieval, compression and segmentation in a quantum system , 2013, Quantum Inf. Process..

[130]  Stephen R. Marsland,et al.  Interpolation Models for Image Super-resolution , 2008, 4th IEEE International Symposium on Electronic Design, Test and Applications (delta 2008).

[131]  Richard Phillips Feynman,et al.  Quantum mechanical computers , 1984, Feynman Lectures on Computation.

[132]  Abdullah M. Iliyasu,et al.  Fast Geometric Transformations on Quantum Images , 2010 .

[133]  Mario Mastriani,et al.  Rule of Three for Superresolution of Still Images with Applications to Compression and Denoising , 2014, ArXiv.

[134]  James S. Walker,et al.  A Primer on Wavelets and Their Scientific Applications , 1999 .

[135]  Daniel N. Rockmore,et al.  The FFT: an algorithm the whole family can use , 2000, Comput. Sci. Eng..

[136]  Kaoru Hirota,et al.  Efficient Color Transformations on Quantum Images , 2011, J. Adv. Comput. Intell. Intell. Informatics.

[137]  Y. Meyer Wavelets and Operators , 1993 .

[138]  A. Bruce,et al.  WAVESHRINK WITH FIRM SHRINKAGE , 1997 .

[139]  Edmund Taylor Whittaker,et al.  The Calculus of Observations. , 1924 .

[140]  Eero P. Simoncelli Bayesian Denoising of Visual Images in the Wavelet Domain , 1999 .

[141]  Xiamu Niu,et al.  Comment on: Novel image encryption/decryption based on quantum fourier transform and double phase encoding , 2014, Quantum Inf. Process..

[142]  Mario Mastriani,et al.  Microarrays Denoising via Smoothing of Coefficients in Wavelet Domain , 2007, 1807.11571.

[143]  Mario Mastriani Fuzzy thresholding in wavelet domain for speckle reduction in Synthetic Aperture Radar images , 2016, ArXiv.

[144]  Zhang Naitong,et al.  A novel fractional wavelet transform and its applications , 2012 .

[145]  Paola Cappellaro,et al.  Polarizing Nuclear Spins in Silicon Carbide , 2015 .

[146]  Ping-Sing Tsai,et al.  JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architectures , 2004 .

[147]  P Cappellaro,et al.  Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. , 2014, Nature nanotechnology.

[148]  E. Jacobsen,et al.  The sliding DFT , 2003, IEEE Signal Process. Mag..

[149]  Dirk Roose,et al.  Wavelet-based image denoising using a Markov random field a priori model , 1997, IEEE Trans. Image Process..

[150]  William L. Briggs,et al.  The DFT : An Owner's Manual for the Discrete Fourier Transform , 1987 .

[151]  Victor Podlozhnyuk,et al.  Image Convolution with CUDA , 2007 .

[152]  Steven G. Krantz,et al.  A Panorama of Harmonic Analysis , 1999 .

[153]  Barbara Burke Hubbard The World According to Wavelets: The Story of a Mathematical Technique in the Making, Second Edition , 1996 .

[154]  Xiao-Ping Zhang,et al.  A new time-scale adaptive denoising method based on wavelet shrinkage , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[155]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[156]  F. Yates Design and Analysis of Factorial Experiments , 1958 .

[157]  LJubisa Stankovic,et al.  Fractional Fourier transform as a signal processing tool: An overview of recent developments , 2011, Signal Process..

[158]  Scott T. Acton,et al.  Speckle reducing anisotropic diffusion , 2002, IEEE Trans. Image Process..

[159]  Salvador E. Venegas-Andraca,et al.  Processing images in entangled quantum systems , 2010, Quantum Inf. Process..

[160]  Xiao-Ping Zhang,et al.  Nonlinear adaptive noise suppression based on wavelet transform , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[161]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[162]  Ri-Gui Zhou,et al.  Quantum Image Encryption and Decryption Algorithms Based on Quantum Image Geometric Transformations , 2013 .

[163]  Gerald Kaiser,et al.  A Friendly Guide to Wavelets , 1994 .

[164]  Robert J. Schalkoff,et al.  Digital Image Processing and Computer Vision , 1989 .

[165]  David H. Bailey,et al.  The Fractional Fourier Transform and Applications , 1991, SIAM Rev..

[166]  José Ignacio Latorre,et al.  Image compression and entanglement , 2005, ArXiv.

[167]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[168]  Paola Cappellaro,et al.  Implementation of State Transfer Hamiltonians in Spin Chains with Magnetic Resonance Techniques , 2014 .

[169]  Salvador Elías Venegas-Andraca,et al.  Discrete quantum walks and quantum image processing , 2005 .

[170]  E M Fortunato,et al.  Implementation of the quantum Fourier transform. , 2001, Physical review letters.

[171]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[172]  Ephraim Feig,et al.  New scaled DCT algorithms for fused multiply/add architectures , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[173]  Lijiang Chen,et al.  Quantum digital image processing algorithms based on quantum measurement , 2013 .