Systems of Conservation Laws: A Challenge for the XXIst Century
暂无分享,去创建一个
[1] B. Riemann. über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite , 1860 .
[2] Richard Courant,et al. Supersonic Flow And Shock Waves , 1948 .
[3] P. Lax. Hyperbolic systems of conservation laws II , 1957 .
[4] P. Lax,et al. Systems of conservation laws , 1960 .
[5] Richard Courant,et al. Methods of Mathematical Physics II: Partial Di erential Equations , 1963 .
[6] Richard Courant,et al. Methods of Mathematical Physics, Volume II: Partial Differential Equations , 1963 .
[7] J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .
[8] P. Brenner. The Cauchy Problem for Symmetric Hyperbolic Systems in Lp. , 1966 .
[9] A. I. Vol'pert. THE SPACES BV AND QUASILINEAR EQUATIONS , 1967 .
[10] Takaaki Nishida,et al. Global solution for an initial boundary value problem of a quasilinear hyperbolic system , 1968 .
[11] H. Kreiss. Initial boundary value problems for hyperbolic systems , 1970 .
[12] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[13] P. Lax,et al. Decay of solutions of systems of nonlinear hyperbolic conservation laws , 1970 .
[14] P. Lax. Shock Waves and Entropy , 1971 .
[15] P. Lax,et al. Systems of conservation equations with a convex extension. , 1971, Proceedings of the National Academy of Sciences of the United States of America.
[16] E. Dill,et al. Thermodynamic restrictions on the constitutive equations of electromagnetic theory , 1971 .
[17] Burton Wendroff,et al. The Riemann problem for materials with nonconvex equations of state I: Isentropic flow☆ , 1972 .
[18] Burton Wendroff,et al. The Riemann problem for materials with nonconvex equations of state , 1972 .
[19] Constantine M. Dafermos,et al. Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method , 1973 .
[20] C. Dafermos. The entropy rate admissibility criterion for solutions of hyperbolic conservation laws , 1973 .
[21] R. J. Diperna. Singularities of solutions of nonlinear hyperbolic systems of conservation laws , 1975 .
[22] Tai-Ping Liu,et al. The Riemann problem for general systems of conservation laws , 1975 .
[23] Tosio Kato,et al. The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .
[24] Tai-Ping Liu,et al. The entropy condition and the admissibility of shocks , 1976 .
[25] R. J. Diperna,et al. Decay of solutions of hyperbolic systems of conservation laws with a convex extension , 1977 .
[26] Tai-Ping Liu. Decay to N-waves of solutions of general systems of nonlinear hyperbolic conservation laws , 1977 .
[27] R. J. Diperna. Uniqueness of Solutions to Hyperbolic Conservation Laws. , 1978 .
[28] Luc Tartar,et al. Compensated compactness and applications to partial differential equations , 1979 .
[29] J. Nédélec,et al. First order quasilinear equations with boundary conditions , 1979 .
[30] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[31] C. Dafermos. The second law of thermodynamics and stability , 1979 .
[32] M. Slemrod. Dynamic phase transitions in a van der Waals fluid , 1981 .
[34] Reiko Sakamoto,et al. Hyperbolic boundary value problems , 1982 .
[35] J. Smoller. Shock Waves and Reaction-Diffusion Equations , 1983 .
[36] R. J. DiPerna. Convergence of approximate solutions to conservation laws , 1983 .
[37] R. J. Diperna,et al. Convergence of the viscosity method for isentropic gas dynamics , 1983 .
[38] B. Temple. Systems of conservation laws with invariant submanifolds , 1983 .
[39] A. Majda. The stability of multi-dimensional shock fronts , 1983 .
[40] A. Majda. The existence of multi-dimensional shock fronts , 1983 .
[41] J. M. Ball,et al. SHOCK WAVES AND REACTION‐DIFFUSION EQUATIONS (Grundlehren der mathematischen Wissenschaften, 258) , 1984 .
[42] Robert L. Pego,et al. Stable viscosity matrices for systems of conservation laws , 1985 .
[43] Tai-Ping Liu,et al. Nonlinear Stability of Shock Waves for Viscous Conservation Laws , 1985 .
[44] R. LeVeque,et al. Stability of Godunov’s method for a class of 2×2 systems of conservation laws , 1985 .
[45] Tatsien Li,et al. Boundary value problems for quasilinear hyperbolic systems , 1985 .
[46] Jeffrey Rauch,et al. BV estimates fail for most quasilinear hyperbolic systems in dimensions greater than one , 1986 .
[47] Jonathan Goodman,et al. Nonlinear asymptotic stability of viscous shock profiles for conservation laws , 1986 .
[48] Kurt Friedrichs,et al. [71-1] Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. USA, 68 (1971), 1686–1688 , 1986 .
[49] P. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .
[50] Izrail Moiseevich Gelfand. Some problems in the theory of quasilinear equations , 1987 .
[51] L. Truskinovskii,et al. Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium☆ , 1987 .
[52] Tai-Ping Liu. Hyperbolic conservation laws with relaxation , 1987 .
[53] S. K. Godounov. Lois de conservation et integrales d'energie des equations hyperboliques , 1987 .
[54] P. Floch,et al. Boundary conditions for nonlinear hyperbolic systems of conservation laws , 1988 .
[55] L. Hsiao,et al. The Riemann problem and interaction of waves in gas dynamics , 1989 .
[56] Gui-Qiang G. Chen,et al. Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics , 1989 .
[57] B. Perthame,et al. A kinetic equation with kinetic entropy functions for scalar conservation laws , 1991 .
[58] C. Dafermos,et al. Generalised characteristics in hyperbolic systems of conservation laws with special coupling , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[59] Zhouping Xin,et al. Nonlinear stability of viscous shock waves , 1993 .
[60] J. Bony. Analyse microlocale des équations aux dérivées partielles non linéaires , 1991 .
[61] Geng,et al. Generalized characteristics uniqueness and regularity of solutions in a hyperbolic system of conservation laws , 1991 .
[62] Dan Marchesin,et al. A global formalism for nonlinear waves in conservation laws , 1992 .
[63] D. Serre,et al. Solutions Faibles Globales Pour L'Equations D'Euler D'un Fluide Compressible Avec De Grandes Donnees Initiles , 1992 .
[64] Compacité par compensation pour une classe de systèmes hyperboliques de $p ≥ 3$ lois de conservation , 1994 .
[65] D. Serre,et al. Etude des conditions aux limites pour des systèmes strictement hyperboliques, via l'approximation parabolique , 1994 .
[66] Arnaud Heibig,et al. Existence and uniqueness of solutions for some hyperbolic systems of conservation laws , 1994 .
[67] B. S'evennec. G'eom'etrie des syst`emes hyperboliques de lois de conservation , 1994 .
[68] J. Joly,et al. A nonlinear instability for 3×3 systems of conservation laws , 1994 .
[69] H. Freistühler. The persistence of ideal shock waves , 1994 .
[70] B. Perthame,et al. A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .
[71] S. Alinhac. Explosion Geometrique pour des Systemes Quasi-Lineaires , 1995 .
[72] Guy Métivier,et al. Coherent and focusing multidimensional nonlinear geometric optics , 1995 .
[73] Peter Szmolyan,et al. Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves , 1995 .
[74] A. Bressan,et al. The semigroup generated by 2 × 2 conservation laws , 1995 .
[75] Z. Xin,et al. The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .
[76] P. Lions. Mathematical topics in fluid mechanics , 1996 .
[77] Kevin Zumbrun,et al. Pointwise semigroup methods and stability of viscous shock waves Indiana Univ , 1998 .
[78] Emmanuel Grenier,et al. Boundary Layers for Viscous Perturbations of Noncharacteristic Quasilinear Hyperbolic Problems , 1998 .
[79] S. Benzoni-Gavage. Stability of multi-dimensional phase transitions in a Van Der Waals fluid , 1998 .
[80] Denis Serre,et al. ℒ1 stability of shock waves in scalar viscous conservation laws , 1998 .
[81] H. Kreiss,et al. Stability of systems of viscous conservation laws , 1998 .
[82] Christian Fries. Nonlinear Asymptotic Stability of General Small-Amplitude Viscous Laxian Shock Waves , 1998 .
[83] Kevin Zumbrun,et al. The gap lemma and geometric criteria for instability of viscous shock profiles , 1998 .
[84] Kevin Zumbrun,et al. Viscous and inviscid stability of multidimensional planar shock fronts , 1999 .
[85] A. Bressan,et al. L1 Stability Estimates for n×n Conservation Laws , 1999 .
[86] Athanasios E. Tzavaras,et al. Materials with Internal Variables and Relaxation to Conservation Laws , 1999 .
[87] D. Serre. Systems of conservation laws , 1999 .
[88] S. Benzoni-Gavage. Nonuniqueness of phase transitions near the Maxwell line , 1999 .
[89] Discrete Shock Profiles and Their Stability , 1999 .
[90] C. Dafermos. Hyberbolic Conservation Laws in Continuum Physics , 2000 .
[91] B. Piccoli,et al. Well-posedness of the Cauchy problem for × systems of conservation laws , 2000 .
[92] D. Serre. Relaxations semi-linaire et cintique des systmes de lois de conservation , 2000 .
[93] L. Chambers. Linear and Nonlinear Waves , 2000, The Mathematical Gazette.