Systems of Conservation Laws: A Challenge for the XXIst Century

In applied partial differential equations, people distinguish between at least three important families, named hyperbolic, elliptic and parabolic. Their paradigms are, respectively, the wave, the Laplace and the heat equations, whose qualitative properties differ drastically from each other. Linear theories have been designed for each class, involving appropriate functional spaces. By Duhamel’s principle, these theories have been extended to most semi-linear problems, where the principal part is still linear. However, fully nonlinear problems, or even quasilinear ones, are more difficult to deal with and require other ideas. Solutions of reasonable problems might have poor regularity, in which case they are called weak. Then, an ‘entropy’ criterion may be needed to select a unique, relevant solution among the weak ones. In most scalar cases, a comparison principle holds, and monotonicity encodes the entropy condition; here is the realm of nonlinear semigroup theories.

[1]  B. Riemann über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite , 1860 .

[2]  Richard Courant,et al.  Supersonic Flow And Shock Waves , 1948 .

[3]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[4]  P. Lax,et al.  Systems of conservation laws , 1960 .

[5]  Richard Courant,et al.  Methods of Mathematical Physics II: Partial Di erential Equations , 1963 .

[6]  Richard Courant,et al.  Methods of Mathematical Physics, Volume II: Partial Differential Equations , 1963 .

[7]  J. Glimm Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .

[8]  P. Brenner The Cauchy Problem for Symmetric Hyperbolic Systems in Lp. , 1966 .

[9]  A. I. Vol'pert THE SPACES BV AND QUASILINEAR EQUATIONS , 1967 .

[10]  Takaaki Nishida,et al.  Global solution for an initial boundary value problem of a quasilinear hyperbolic system , 1968 .

[11]  H. Kreiss Initial boundary value problems for hyperbolic systems , 1970 .

[12]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[13]  P. Lax,et al.  Decay of solutions of systems of nonlinear hyperbolic conservation laws , 1970 .

[14]  P. Lax Shock Waves and Entropy , 1971 .

[15]  P. Lax,et al.  Systems of conservation equations with a convex extension. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[16]  E. Dill,et al.  Thermodynamic restrictions on the constitutive equations of electromagnetic theory , 1971 .

[17]  Burton Wendroff,et al.  The Riemann problem for materials with nonconvex equations of state I: Isentropic flow☆ , 1972 .

[18]  Burton Wendroff,et al.  The Riemann problem for materials with nonconvex equations of state , 1972 .

[19]  Constantine M. Dafermos,et al.  Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method , 1973 .

[20]  C. Dafermos The entropy rate admissibility criterion for solutions of hyperbolic conservation laws , 1973 .

[21]  R. J. Diperna Singularities of solutions of nonlinear hyperbolic systems of conservation laws , 1975 .

[22]  Tai-Ping Liu,et al.  The Riemann problem for general systems of conservation laws , 1975 .

[23]  Tosio Kato,et al.  The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .

[24]  Tai-Ping Liu,et al.  The entropy condition and the admissibility of shocks , 1976 .

[25]  R. J. Diperna,et al.  Decay of solutions of hyperbolic systems of conservation laws with a convex extension , 1977 .

[26]  Tai-Ping Liu Decay to N-waves of solutions of general systems of nonlinear hyperbolic conservation laws , 1977 .

[27]  R. J. Diperna Uniqueness of Solutions to Hyperbolic Conservation Laws. , 1978 .

[28]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[29]  J. Nédélec,et al.  First order quasilinear equations with boundary conditions , 1979 .

[30]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[31]  C. Dafermos The second law of thermodynamics and stability , 1979 .

[32]  M. Slemrod Dynamic phase transitions in a van der Waals fluid , 1981 .

[33]  An estimate of the energy integral of a mixed problem for the equations of gasdynamics with boundary conditions on a shock wave , 1981 .

[34]  Reiko Sakamoto,et al.  Hyperbolic boundary value problems , 1982 .

[35]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[36]  R. J. DiPerna Convergence of approximate solutions to conservation laws , 1983 .

[37]  R. J. Diperna,et al.  Convergence of the viscosity method for isentropic gas dynamics , 1983 .

[38]  B. Temple Systems of conservation laws with invariant submanifolds , 1983 .

[39]  A. Majda The stability of multi-dimensional shock fronts , 1983 .

[40]  A. Majda The existence of multi-dimensional shock fronts , 1983 .

[41]  J. M. Ball,et al.  SHOCK WAVES AND REACTION‐DIFFUSION EQUATIONS (Grundlehren der mathematischen Wissenschaften, 258) , 1984 .

[42]  Robert L. Pego,et al.  Stable viscosity matrices for systems of conservation laws , 1985 .

[43]  Tai-Ping Liu,et al.  Nonlinear Stability of Shock Waves for Viscous Conservation Laws , 1985 .

[44]  R. LeVeque,et al.  Stability of Godunov’s method for a class of 2×2 systems of conservation laws , 1985 .

[45]  Tatsien Li,et al.  Boundary value problems for quasilinear hyperbolic systems , 1985 .

[46]  Jeffrey Rauch,et al.  BV estimates fail for most quasilinear hyperbolic systems in dimensions greater than one , 1986 .

[47]  Jonathan Goodman,et al.  Nonlinear asymptotic stability of viscous shock profiles for conservation laws , 1986 .

[48]  Kurt Friedrichs,et al.  [71-1] Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. USA, 68 (1971), 1686–1688 , 1986 .

[49]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[50]  Izrail Moiseevich Gelfand Some problems in the theory of quasilinear equations , 1987 .

[51]  L. Truskinovskii,et al.  Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium☆ , 1987 .

[52]  Tai-Ping Liu Hyperbolic conservation laws with relaxation , 1987 .

[53]  S. K. Godounov Lois de conservation et integrales d'energie des equations hyperboliques , 1987 .

[54]  P. Floch,et al.  Boundary conditions for nonlinear hyperbolic systems of conservation laws , 1988 .

[55]  L. Hsiao,et al.  The Riemann problem and interaction of waves in gas dynamics , 1989 .

[56]  Gui-Qiang G. Chen,et al.  Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics , 1989 .

[57]  B. Perthame,et al.  A kinetic equation with kinetic entropy functions for scalar conservation laws , 1991 .

[58]  C. Dafermos,et al.  Generalised characteristics in hyperbolic systems of conservation laws with special coupling , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[59]  Zhouping Xin,et al.  Nonlinear stability of viscous shock waves , 1993 .

[60]  J. Bony Analyse microlocale des équations aux dérivées partielles non linéaires , 1991 .

[61]  Geng,et al.  Generalized characteristics uniqueness and regularity of solutions in a hyperbolic system of conservation laws , 1991 .

[62]  Dan Marchesin,et al.  A global formalism for nonlinear waves in conservation laws , 1992 .

[63]  D. Serre,et al.  Solutions Faibles Globales Pour L'Equations D'Euler D'un Fluide Compressible Avec De Grandes Donnees Initiles , 1992 .

[64]  Compacité par compensation pour une classe de systèmes hyperboliques de $p ≥ 3$ lois de conservation , 1994 .

[65]  D. Serre,et al.  Etude des conditions aux limites pour des systèmes strictement hyperboliques, via l'approximation parabolique , 1994 .

[66]  Arnaud Heibig,et al.  Existence and uniqueness of solutions for some hyperbolic systems of conservation laws , 1994 .

[67]  B. S'evennec G'eom'etrie des syst`emes hyperboliques de lois de conservation , 1994 .

[68]  J. Joly,et al.  A nonlinear instability for 3×3 systems of conservation laws , 1994 .

[69]  H. Freistühler The persistence of ideal shock waves , 1994 .

[70]  B. Perthame,et al.  A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .

[71]  S. Alinhac Explosion Geometrique pour des Systemes Quasi-Lineaires , 1995 .

[72]  Guy Métivier,et al.  Coherent and focusing multidimensional nonlinear geometric optics , 1995 .

[73]  Peter Szmolyan,et al.  Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves , 1995 .

[74]  A. Bressan,et al.  The semigroup generated by 2 × 2 conservation laws , 1995 .

[75]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[76]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[77]  Kevin Zumbrun,et al.  Pointwise semigroup methods and stability of viscous shock waves Indiana Univ , 1998 .

[78]  Emmanuel Grenier,et al.  Boundary Layers for Viscous Perturbations of Noncharacteristic Quasilinear Hyperbolic Problems , 1998 .

[79]  S. Benzoni-Gavage Stability of multi-dimensional phase transitions in a Van Der Waals fluid , 1998 .

[80]  Denis Serre,et al.  ℒ1 stability of shock waves in scalar viscous conservation laws , 1998 .

[81]  H. Kreiss,et al.  Stability of systems of viscous conservation laws , 1998 .

[82]  Christian Fries Nonlinear Asymptotic Stability of General Small-Amplitude Viscous Laxian Shock Waves , 1998 .

[83]  Kevin Zumbrun,et al.  The gap lemma and geometric criteria for instability of viscous shock profiles , 1998 .

[84]  Kevin Zumbrun,et al.  Viscous and inviscid stability of multidimensional planar shock fronts , 1999 .

[85]  A. Bressan,et al.  L1 Stability Estimates for n×n Conservation Laws , 1999 .

[86]  Athanasios E. Tzavaras,et al.  Materials with Internal Variables and Relaxation to Conservation Laws , 1999 .

[87]  D. Serre Systems of conservation laws , 1999 .

[88]  S. Benzoni-Gavage Nonuniqueness of phase transitions near the Maxwell line , 1999 .

[89]  Discrete Shock Profiles and Their Stability , 1999 .

[90]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[91]  B. Piccoli,et al.  Well-posedness of the Cauchy problem for × systems of conservation laws , 2000 .

[92]  D. Serre Relaxations semi-linaire et cintique des systmes de lois de conservation , 2000 .

[93]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.