Tissue Optical Properties

[1]  R. Anderson,et al.  The optics of human skin. , 1981, The Journal of investigative dermatology.

[2]  Ashley J. Welch,et al.  Development and application of three-dimensional light distribution model for laser irradiated tissue , 1987 .

[3]  S. Neamţu,et al.  High-resolution angle-resolved measurements of light scattered at small angles by red blood cells in suspension. , 2006, Applied optics.

[4]  J. Barbenel,et al.  Direct measurement of the optical properties of human breast skin , 1996, Medical and Biological Engineering and Computing.

[5]  D. Sardar,et al.  Optical Properties of Whole Blood , 1998, Lasers in Medical Science.

[6]  Jun Q. Lu,et al.  Optical properties of porcine skin dermis between 900 nm and 1500 nm , 2001, Physics in medicine and biology.

[7]  L Wang,et al.  MCML--Monte Carlo modeling of light transport in multi-layered tissues. , 1995, Computer methods and programs in biomedicine.

[8]  A Roggan,et al.  Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm , 2001, Lasers in surgery and medicine.

[9]  Ashleyj . Welch,et al.  Optical-Thermal Response of Laser-Irradiated Tissue , 1995 .

[10]  David T. Delpy,et al.  Optical properties of brain tissue , 1993, Photonics West - Lasers and Applications in Science and Engineering.

[11]  A Roggan,et al.  Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation. , 1995, Physics in medicine and biology.

[12]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[13]  Guillermo Aguilar,et al.  Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms. , 2005, Journal of biomedical optics.

[14]  Reginald Birngruber,et al.  Optical properties of human arterial thrombus, vascular grafts, and sutures: implications for selective laser thrombus ablation , 1990 .

[15]  T. Vo‐Dinh,et al.  Optical Properties of Tissue , 2003 .

[16]  R. Doornbos,et al.  The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. , 1999, Physics in medicine and biology.

[17]  Martina Meinke,et al.  Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm. , 2009, Journal of biomedical optics.

[18]  S. C. Hill,et al.  Light Scattering by Particles: Computational Methods , 1990 .

[19]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[20]  A. P. Shepherd,et al.  Comparison of Mie theory and the light scattering of red blood cells. , 1988, Applied optics.

[21]  E Claridge,et al.  Monte Carlo modelling of the spectral reflectance of the human eye. , 2002, Physics in medicine and biology.

[22]  D T Delpy,et al.  The use of the Henyey–Greenstein phase function in Monte Carlo simulations in biomedical optics , 2006, Physics in medicine and biology.

[23]  Huafeng Ding,et al.  Bulk optical parameters of porcine skin dermis at eight wavelengths from 325 to 1557 nm. , 2005, Optics letters.

[24]  Ilya V. Yaroslavsky,et al.  Optical properties of blood in the near-infrared spectral range , 1996, Photonics West.

[25]  Atam P. Dhawan,et al.  Monte Carlo simulation of light-tissue interaction: three-dimensional simulation for trans-illumination-based imaging of skin lesions , 2005, IEEE Transactions on Biomedical Engineering.

[26]  Tuan Vo-Dinh,et al.  Biomedical Photonics Handbook , 2003 .

[27]  M S Patterson,et al.  Determination of the optical properties of turbid media from a single Monte Carlo simulation , 1996, Physics in medicine and biology.

[28]  Martina Meinke,et al.  Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions. , 2006, Journal of biomedical optics.

[29]  R Marchesini,et al.  Extinction and absorption coefficients and scattering phase functions of human tissues in vitro. , 1989, Applied optics.

[30]  Gerhard J. Mueller,et al.  Determination of optical tissue properties with double integrating sphere technique and Monte Carlo simulations , 1994, Other Conferences.

[31]  I. Yaroslavsky,et al.  Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements. , 1996, Applied optics.

[32]  M. H. Koelink,et al.  Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations. , 1992, Applied optics.

[33]  M S Patterson,et al.  Quantification of bioluminescence images of point source objects using diffusion theory models , 2006, Physics in medicine and biology.

[34]  Prerana,et al.  Method to determine the optical properties of turbid media. , 2008, Applied optics.

[35]  S. Jacques,et al.  Light distributions in artery tissue: Monte Carlo simulations for finite‐diameter laser beams , 1989, Lasers in surgery and medicine.

[36]  Daniel Dupont,et al.  Bibliographical review for reflectance of diffusing media , 2001 .

[37]  M. H. Koelink,et al.  Optical properties of human dermis in vitro and in vivo. , 1993, Applied optics.

[38]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[39]  Francis A. Duck,et al.  Physical properties of tissue : a comprehensive reference book , 1990 .

[40]  Norman J. McCormick,et al.  Approximate two-parameter phase function for light scattering , 1980 .

[41]  M S Patterson,et al.  Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid monte carlo diffusion model. , 2001, Applied optics.

[42]  C. Hourdakis,et al.  A Monte Carlo estimation of tissue optical properties for use in laser dosimetry. , 1995, Physics in medicine and biology.

[43]  S. Neamţu,et al.  Aggregation of red blood cells in suspension: study by light-scattering technique at small angles. , 2008, Journal of biomedical optics.

[44]  Alwin Kienle,et al.  Phase function measurements on nonspherical scatterers using a two-axis goniometer. , 2006, Journal of biomedical optics.

[45]  Jack L Ferracane,et al.  A pilot study of a simple photon migration model for predicting depth of cure in dental composite. , 2005, Dental materials : official publication of the Academy of Dental Materials.

[46]  J. Weiner,et al.  Fundamentals and applications , 2003 .

[47]  E Salomatina,et al.  Evaluation of the in vivo and ex vivo optical properties in a mouse ear model. , 2008, Physics in medicine and biology.

[48]  I. Fine,et al.  Optical properties of the sclera. , 1985, Physics in medicine and biology.

[49]  J. T. ten Bosch,et al.  The absorption and scattering of light in bovine and human dental enamel , 2006, Calcified Tissue Research.

[50]  S C Gebhart,et al.  In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling , 2006, Physics in medicine and biology.

[51]  J. C. van der Leun,et al.  FORWARD SCATTERING PROPERTIES OF HUMAN EPIDERMAL LAYERS , 1984, Photochemistry and photobiology.

[52]  M. Kohl,et al.  Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. , 1998, Physics in medicine and biology.

[53]  B Palcic,et al.  Optical properties of normal and carcinomatous bronchial tissue. , 1994, Applied optics.

[54]  H.J.C.M. Sterenborg,et al.  Skin optics , 1989, IEEE Transactions on Biomedical Engineering.

[55]  J. Featherstone,et al.  Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. , 1995, Applied optics.

[56]  V. Tuchin Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis , 2000 .

[57]  J J ten Bosch,et al.  Optical properties of bovine muscle tissue in vitro; a comparison of methods , 1998 .

[58]  A D Gordon,et al.  Near-infrared optical properties of ex vivo human uterus determined by the Monte Carlo inversion technique. , 1999, Physics in medicine and biology.

[60]  A. Welch,et al.  A review of the optical properties of biological tissues , 1990 .

[61]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[62]  H. G. Rylander,et al.  Use of an agent to reduce scattering in skin , 1999, Lasers in surgery and medicine.

[63]  Valery V. Tuchin,et al.  Optical clearing of human dura mater , 2005 .

[64]  D. Andrews Encyclopedia of Applied Spectroscopy , 2009 .

[65]  Shaoqun Zeng,et al.  Effect of light losses of sample between two integrating spheres on optical properties estimation. , 2007, Journal of biomedical optics.

[66]  J D HARDY,et al.  Spectral transmittance and reflectance of excised human skin. , 1956, Journal of applied physiology.

[67]  Nadya Ugryumova,et al.  Measurement of bone mineral density via light scattering. , 2004, Physics in medicine and biology.

[68]  J. Spanier,et al.  Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues. , 2001, Optics letters.

[69]  Thomas Kahn,et al.  Changes in the optical properties of laser-coagulated and thermally coagulated bovine myocardium , 1998, Photonics West - Biomedical Optics.

[70]  Valery V. Tuchin,et al.  Angular scattering properties of human epidermal layers , 1994, Other Conferences.

[71]  Van de Hulst,et al.  Multiple Light Scattering: Tables, Formulas, and Applications , 1980 .

[72]  G. Müller,et al.  Medical Optical Tomography: Functional Imaging and Monitoring , 1993 .

[73]  O. V. Mareev,et al.  Optical properties of mucous membrane in the spectral range 350–2000 nm , 2004 .

[74]  Valery V. Tuchin,et al.  Optical properties of human cranial bone in the spectral range from 800 to 2000 nm , 2006, Saratov Fall Meeting.

[75]  Christian Depeursinge,et al.  In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties. , 2003, Journal of biomedical optics.

[76]  P. Kubelka Ein Beitrag zur Optik der Farban striche , 1931 .

[77]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[78]  Andre Roggan,et al.  Laser-Induced Interstitial Thermotherapy , 1995 .

[79]  V. V. Tuchin Light scattering study of tissues , 1997 .

[80]  D T Delpy,et al.  Measurement of the optical properties of the skull in the wavelength range 650-950 nm , 1993, Physics in medicine and biology.

[81]  Elena Salomatina,et al.  Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. , 2006, Journal of biomedical optics.

[82]  James G. Fujimoto,et al.  Advances in Optical Imaging and Photon Migration , 1996 .

[83]  Daniel Fried,et al.  Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm. , 2006, Journal of biomedical optics.

[84]  R. Glickman,et al.  Optical characterization of melanin. , 2000, Journal of biomedical optics.

[85]  W M Johnston,et al.  Optical properties of human trabecular meshwork in the visible and near‐infrared region , 1999, Lasers in surgery and medicine.

[86]  M. Niemz Laser-Tissue Interactions , 1996 .

[87]  I. Yaroslavsky,et al.  Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements. , 1999, Journal of biomedical optics.

[88]  V. Tuchin Handbook of Optical Biomedical Diagnostics , 2002 .

[89]  A. Roggan,et al.  The effect of preparation technique on the optical parameters of biological tissue , 1999 .

[90]  J W Pickering,et al.  In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm , 1997, Physics in medicine and biology.

[91]  V. Tuchin Optical Spectroscopy of Biological Materials , 2009 .

[92]  W M Johnston,et al.  Accuracy of Kubelka-Munk Reflectance Theory Applied to Human Dentin and Enamel , 2001, Journal of dental research.

[93]  Lihong V. Wang,et al.  Monte Carlo Modeling of Light Transport in Tissues , 1995 .

[94]  M Essenpreis,et al.  Effect of temperature on the optical properties of ex vivo human dermis and subdermis. , 1998, Physics in medicine and biology.

[95]  S. Mohanty,et al.  Measurement of optical transport properties of normal and malignant human breast tissue. , 2001, Applied optics.

[96]  Wim Verkruysse,et al.  Changes in Optical Properties of Human Whole Blood in vitro Due to Slow Heating , 1997, Photochemistry and photobiology.

[97]  Ruikang K. Wang Modelling optical properties of soft tissue by fractal distribution of scatterers , 2000 .

[98]  Valery V. Tuchin,et al.  Optical clearing of human eye sclera , 2009, BiOS.

[99]  Karthik Vishwanath,et al.  Quantitative molecular sensing in biological tissues: an approach to non-invasive optical characterization. , 2006, Optics express.

[100]  R. Srinivasan,et al.  Optical characterization of mammalian tissues by laser reflectometry and Monte Carlo simulation. , 2004, Medical engineering & physics.

[101]  I. Yaroslavsky,et al.  Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. , 2002, Physics in medicine and biology.

[102]  S. Thennadil,et al.  Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm. , 2001, Journal of biomedical optics.

[103]  Nirmala Ramanujam,et al.  Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique , 2006, Lasers in surgery and medicine.

[104]  Martina Meinke,et al.  Empirical model functions to calculate hematocrit-dependent optical properties of human blood. , 2007, Applied optics.

[105]  S. Miklavcic,et al.  Revised Kubelka-Munk theory. II. Unified framework for homogeneous and inhomogeneous optical media. , 2004, Journal of The Optical Society of America A-optics Image Science and Vision.

[106]  P. Marquet,et al.  In vivo local determination of tissue optical properties: applications to human brain. , 1999, Applied optics.

[107]  J. Walsh,et al.  Optical properties of human gallbladder tissue and bile. , 1993, Applied optics.

[108]  Charles E. Clark,et al.  Monte Carlo , 2006 .

[109]  Roberto Reif,et al.  Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media. , 2007, Applied optics.

[110]  Dhiraj K Sardar,et al.  Optical scattering, absorption, and polarization of healthy and neovascularized human retinal tissues. , 2005, Journal of biomedical optics.

[111]  R. R. Alfano,et al.  DNA and Protein Changes Caused by Disease in Human Breast Tissues Probed by the Kubelka–Munk Spectral Function¶ , 2002 .