Autoimmunity affecting the biliary tract fuels the immunosurveillance of cholangiocarcinoma

The present study shows in murine models that autoimmunity, which targets normal cholangiocytes upon primary biliary cholangitis, fuels the immunosurveillance of malignant cholangiocytes and protects from the emergence of cholangiocarcinoma.

[1]  M. Karin,et al.  The neglected brothers come of age: B cells and cancer. , 2021, Seminars in immunology.

[2]  L. Zitvogel,et al.  Beneficial autoimmunity improves cancer prognosis , 2021, Nature Reviews Clinical Oncology.

[3]  D. Sia,et al.  Cell of origin in biliary tract cancers and clinical implications , 2021, JHEP reports : innovation in hepatology.

[4]  G. Kroemer,et al.  Enhanced immunotherapeutic profile of oncolytic virus-based cancer vaccination using cyclophosphamide preconditioning , 2020, Journal for ImmunoTherapy of Cancer.

[5]  P. Ohashi,et al.  The Roles of CD8+ T Cell Subsets in Antitumor Immunity. , 2020, Trends in cell biology.

[6]  G. Gores,et al.  Cholangiocarcinoma 2020: the next horizon in mechanisms and management , 2020, Nature Reviews Gastroenterology & Hepatology.

[7]  T. Vanden Berghe,et al.  Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer , 2020, Nature Medicine.

[8]  Natalia,et al.  Cholangiocarcinoma , 2010, Surgical Challenges in the Management of Liver Disease.

[9]  L. Richard,et al.  ADAR1 mediated regulation of neural crest derived melanocytes and Schwann cell development , 2020, Nature Communications.

[10]  A. Sonnenberg,et al.  Laminin-binding integrins are essential for the maintenance of functional mammary secretory epithelium in lactation. , 2020, Development.

[11]  B. Lichty,et al.  Detection of Tumor Antigen-Specific T-Cell Responses After Oncolytic Vaccination. , 2020, Methods in molecular biology.

[12]  H. Ahn,et al.  The incidence and survival of melanoma and nonmelanoma skin cancer in patients with vitiligo: a nationwide population‐based matched cohort study in Korea , 2020, The British journal of dermatology.

[13]  A. Kallies,et al.  Precursor exhausted T cells: key to successful immunotherapy? , 2019, Nature Reviews Immunology.

[14]  B. Bengsch,et al.  Use of Mass Cytometry to Profile Human T Cell Exhaustion , 2020, Frontiers in Immunology.

[15]  G. Hirschfield,et al.  Primary biliary cholangitis: pathogenesis and therapeutic opportunities , 2019, Nature Reviews Gastroenterology & Hepatology.

[16]  Juliette Paillet,et al.  Immune contexture of cholangiocarcinoma. , 2019, Current opinion in gastroenterology.

[17]  D. Surdez,et al.  Clonally Expanded T Cells Reveal Immunogenicity of Rhabdoid Tumors. , 2019, Cancer cell.

[18]  C. Failla,et al.  Melanoma and Vitiligo: In Good Company , 2019, International journal of molecular sciences.

[19]  A. Hutson,et al.  Augmentation of IFN-γ+ CD8+ T cell responses correlates with survival of HCC patients on sorafenib therapy. , 2019, JCI insight.

[20]  D. Ribatti,et al.  Inflammatory cells infiltrate and angiogenesis in locally advanced and metastatic cholangiocarcinoma , 2019, European journal of clinical investigation.

[21]  Yan Ding,et al.  The Emerging Epigenetic Role of CD8+T Cells in Autoimmune Diseases: A Systematic Review , 2019, Front. Immunol..

[22]  I. Lucca,et al.  Double Positive CD4+CD8+ T Cells Are Enriched in Urological Cancers and Favor T Helper-2 Polarization , 2019, Front. Immunol..

[23]  Wen-Tao Ma,et al.  Immunological abnormalities in patients with primary biliary cholangitis. , 2019, Clinical science.

[24]  G. Stoll,et al.  Preclinical evaluation of a MAGE-A3 vaccination utilizing the oncolytic Maraba virus currently in first-in-human trials , 2018, Oncoimmunology.

[25]  G. Gores,et al.  Cholangiocyte pathobiology , 2019, Nature Reviews Gastroenterology & Hepatology.

[26]  L. Ni,et al.  High Levels of Eomes Promote Exhaustion of Anti-tumor CD8+ T Cells , 2018, Front. Immunol..

[27]  Dong Sun Kim,et al.  Associations between Hashimoto Thyroiditis and Clinical Outcomes of Papillary Thyroid Cancer: A Meta-Analysis of Observational Studies , 2018, Endocrinology and metabolism.

[28]  V. Badovinac,et al.  Defining Memory CD8 T Cell , 2018, Front. Immunol..

[29]  J. Diallo,et al.  Development and applications of oncolytic Maraba virus vaccines , 2018, Oncolytic virotherapy.

[30]  L. Zitvogel,et al.  TumGrowth: An open-access web tool for the statistical analysis of tumor growth curves , 2018, Oncoimmunology.

[31]  N. Cook,et al.  Effects of aspirin on risks of vascular events and cancer according to bodyweight and dose: analysis of individual patient data from randomised trials , 2018, The Lancet.

[32]  M. Bolgov,et al.  Differentiated thyroid carcinomas associated with chronic thyroiditis: biological and clinical properties. , 2018, Experimental oncology.

[33]  A. Lohse,et al.  Primary sclerosing cholangitis , 2018, The Lancet.

[34]  M. Oliveira,et al.  Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion , 2018, Front. Immunol..

[35]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[36]  D. Elston,et al.  When worlds collide: Th17 and Treg cells in cancer and autoimmunity , 2018, Cellular & Molecular Immunology.

[37]  J. Andersen,et al.  Desmoplastic Tumor Microenvironment and Immunotherapy in Cholangiocarcinoma. , 2018, Trends in cancer.

[38]  M. Karin,et al.  NF-κB, inflammation, immunity and cancer: coming of age , 2018, Nature Reviews Immunology.

[39]  G. Gores,et al.  YAP-associated chromosomal instability and cholangiocarcinoma in mice , 2017, Oncotarget.

[40]  D. Calvisi,et al.  Animal models of biliary injury and altered bile acid metabolism. , 2017, Biochimica et biophysica acta. Molecular basis of disease.

[41]  Hélène Kaplon,et al.  Quel avenir pour les lymphocytes B infiltrant les tumeurs solides - Marqueur pronostique et/ou cible thérapeutique ? , 2018 .

[42]  M. Dieu-Nosjean,et al.  [Which future for B lymphocytes infiltrating solid tumors: prognostic biomarker and/or therapeutic target?] , 2018, Medecine sciences : M/S.

[43]  T. Karlsen,et al.  Primary sclerosing cholangitis - a comprehensive review. , 2017, Journal of hepatology.

[44]  B. Graubard,et al.  Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: A population-based study in SEER-Medicare , 2017, PloS one.

[45]  Laurence Zitvogel,et al.  The immune contexture in cancer prognosis and treatment , 2017, Nature Reviews Clinical Oncology.

[46]  Stéphane Le Crom,et al.  Aozan: an automated post‐sequencing data‐processing pipeline , 2017, Bioinform..

[47]  Boxi Kang,et al.  Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing , 2017, Cell.

[48]  Yusuke Nakamura,et al.  Clinical significance of T cell clonality and expression levels of immune-related genes in endometrial cancer , 2017, Oncology reports.

[49]  Y. Fujisawa,et al.  Correlation between vitiligo occurrence and clinical benefit in advanced melanoma patients treated with nivolumab: A multi‐institutional retrospective study , 2017, The Journal of dermatology.

[50]  D. Schuppan,et al.  Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal , 2017, Gut.

[51]  K. Tsuneyama,et al.  Primary Biliary Cholangitis: Its Pathological Characteristics and Immunopathological Mechanisms. , 2017, The journal of medical investigation : JMI.

[52]  S. Pillai,et al.  B lymphocytes and cancer: a love-hate relationship. , 2016, Trends in cancer.

[53]  M. Karin,et al.  Targeting Inflammation in Cancer Prevention and Therapy , 2016, Cancer Prevention Research.

[54]  K. Tsuneyama,et al.  Chronic expression of interferon‐gamma leads to murine autoimmune cholangitis with a female predominance , 2016, Hepatology.

[55]  J. Medina,et al.  Mouse models of primary biliary cirrhosis. , 2015, Current pharmaceutical design.

[56]  G. Gores,et al.  IL‐33 facilitates oncogene‐induced cholangiocarcinoma in mice by an interleukin‐6‐sensitive mechanism , 2015, Hepatology.

[57]  Y. Ueno,et al.  Animal Models of Primary Biliary Cirrhosis , 2015, Clinical Reviews in Allergy & Immunology.

[58]  D. Abeni,et al.  Markedly reduced incidence of melanoma and nonmelanoma skin cancer in a nonconcurrent cohort of 10,040 patients with vitiligo. , 2014, Journal of the American Academy of Dermatology.

[59]  H. Vaziri,et al.  Primary Biliary Cirrhosis and Primary Sclerosing Cholangitis: a Review Featuring a Women's Health Perspective , 2014, Journal of clinical and translational hepatology.

[60]  M. Gershwin,et al.  Innate immunity drives xenobiotic‐induced murine autoimmune cholangitis , 2014, Clinical and experimental immunology.

[61]  K. Tsuneyama,et al.  Animal Models of Primary Biliary Cirrhosis , 2014, Seminars in Liver Disease.

[62]  M. Manns,et al.  Characterization of animal models for primary sclerosing cholangitis (PSC). , 2014, Journal of hepatology.

[63]  M. Betts,et al.  Characterization of T-Bet and Eomes in Peripheral Human Immune Cells , 2014, Front. Immunol..

[64]  M. De la Fuente,et al.  Chronic Inflammation and Cytokines in the Tumor Microenvironment , 2014, Journal of immunology research.

[65]  K. Tsuneyama,et al.  IL‐12/Th1 and IL‐23/Th17 biliary microenvironment in primary biliary cirrhosis: Implications for therapy , 2014, Hepatology.

[66]  D. Noonan,et al.  Orchestration of Angiogenesis by Immune Cells , 2014, Front. Oncol..

[67]  Liang Zhang,et al.  Maraba virus as a potent oncolytic vaccine vector. , 2014, Molecular therapy : the journal of the American Society of Gene Therapy.

[68]  D. Neri,et al.  The antibody‐based targeted delivery of interleukin‐4 and 12 to the tumor neovasculature eradicates tumors in three mouse models of cancer , 2014, International journal of cancer.

[69]  A. Warth,et al.  Prognostic impact of tumour-infiltrating immune cells on biliary tract cancer , 2013, British Journal of Cancer.

[70]  R. Zhong,et al.  Increased IL-23 and IL-17 expression by peripheral blood cells of patients with primary biliary cirrhosis. , 2013, Cytokine.

[71]  K. Lam,et al.  Antimitochondrial Antibody Recognition and Structural Integrity of the Inner Lipoyl Domain of the E2 Subunit of Pyruvate Dehydrogenase Complex , 2013, The Journal of Immunology.

[72]  Enrico Rossi,et al.  Image analysis of liver collagen using sirius red is more accurate and correlates better with serum fibrosis markers than trichrome , 2013, Liver international : official journal of the International Association for the Study of the Liver.

[73]  Thomas Höfer,et al.  Stable T-bet+GATA-3+ Th1/Th2 Hybrid Cells Arise In Vivo, Can Develop Directly from Naive Precursors, and Limit Immunopathologic Inflammation , 2013, PLoS biology.

[74]  T. Nijsten,et al.  Decreased risk of melanoma and nonmelanoma skin cancer in patients with vitiligo: a survey among 1307 patients and their partners , 2013, The British journal of dermatology.

[75]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[76]  C. Sautès-Fridman,et al.  The Immune Microenvironment of Human Tumors: General Significance and Clinical Impact , 2013, Cancer Microenvironment.

[77]  P. Trivedi,et al.  Etiopathogenesis of primary biliary cirrhosis: an overview of recent developments , 2013, Hepatology International.

[78]  J. Wolchok,et al.  Induction of tumoricidal function in CD4+ T cells is associated with concomitant memory and terminally differentiated phenotype , 2012, The Journal of experimental medicine.

[79]  R. Liblau,et al.  Tc17 CD8+ T Cells Potentiate Th1-Mediated Autoimmune Diabetes in a Mouse Model , 2012, The Journal of Immunology.

[80]  G. Gores,et al.  Cholangiocarcinomas can originate from hepatocytes in mice. , 2012, The Journal of clinical investigation.

[81]  H. El‐Serag,et al.  Epidemiology of viral hepatitis and hepatocellular carcinoma. , 2012, Gastroenterology.

[82]  Q. Gao,et al.  Intratumoral IL-17+ Cells and Neutrophils show Strong Prognostic Significance in Intrahepatic Cholangiocarcinoma , 2012, Annals of Surgical Oncology.

[83]  M. Molls,et al.  Chronic Inflammation in Cancer Development , 2012, Front. Immun..

[84]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[85]  G. Gores,et al.  Cancer surveillance in patients with primary sclerosing cholangitis , 2011, Hepatology.

[86]  M. Ernstoff,et al.  Autoimmune melanocyte destruction is required for robust CD8+ memory T cell responses to mouse melanoma. , 2011, The Journal of clinical investigation.

[87]  G. Kaplan,et al.  Incidence of primary sclerosing cholangitis: A systematic review and meta‐analysis , 2011, Hepatology.

[88]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[89]  Li Lin,et al.  SOCS1 (suppressor of cytokine signaling 1) , 2011 .

[90]  W. Zou,et al.  TH17 cells in tumour immunity and immunotherapy , 2010, Nature Reviews Immunology.

[91]  R. Blasberg,et al.  Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts , 2010, The Journal of experimental medicine.

[92]  H. Quan,et al.  Epidemiology and natural history of primary biliary cirrhosis in a Canadian health region: A population‐based study , 2009, Hepatology.

[93]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[94]  I. Mackay,et al.  AUTOIMMUNE, CHOLESTATIC AND BILIARY DISEASE Loss of Tolerance in C57BL/6 Mice to the Autoantigen E2 Subunit of Pyruvate Dehydrogenase by a Xenobiotic with Ensuing Biliary Ductular Disease , 2008 .

[95]  G. Gores,et al.  Cholangiocarcinoma: Advances in pathogenesis, diagnosis, and treatment , 2008, Hepatology.

[96]  I. Mackay,et al.  The causes of primary biliary cirrhosis: Convenient and inconvenient truths , 2007, Hepatology.

[97]  A. Parés [Natural history of primary biliary cirrhosis]. , 2008, Gastroenterologia y hepatologia.

[98]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[99]  B. Graubard,et al.  Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based case-control study. , 2007, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[100]  K. Zatloukal,et al.  A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. , 2007, The American journal of pathology.

[101]  Wan-Wan Lin,et al.  A cytokine-mediated link between innate immunity, inflammation, and cancer. , 2007, The Journal of clinical investigation.

[102]  Robert D. Schreiber,et al.  Interferons, immunity and cancer immunoediting , 2006, Nature Reviews Immunology.

[103]  E. Wherry,et al.  Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin , 2005, Nature Immunology.

[104]  K. Tsuneyama,et al.  Increased levels of chemokine receptor CXCR3 and chemokines IP-10 and MIG in patients with primary biliary cirrhosis and their first degree relatives. , 2005, Journal of autoimmunity.

[105]  Guttorm Haraldsen,et al.  Primary antitumor immune response mediated by CD4+ T cells. , 2005, Immunity.

[106]  P. Angus,et al.  Epidemiology of primary biliary cirrhosis in Victoria, Australia: high prevalence in migrant populations. , 2004, Gastroenterology.

[107]  S. Kawasaki,et al.  Dendritic cells, T-cell infiltration, and Grp94 expression in cholangiocellular carcinoma. , 2004, Human pathology.

[108]  J. Bramson,et al.  Vaccination-Induced Autoimmune Vitiligo Is a Consequence of Secondary Trauma to the Skin , 2004, Cancer Research.

[109]  T. Saibara,et al.  Case Report: Primary Biliary Cirrhosis Associated with Cholangiocarcinoma , 1998, Digestive Diseases and Sciences.

[110]  T. Oshikiri,et al.  Prognostic value of intratumoral CD8+ T lymphocyte in extrahepatic bile duct carcinoma as essential immune response , 2003, Journal of surgical oncology.

[111]  M. Kaplan,et al.  Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. , 2002, The Journal of clinical investigation.

[112]  M. Kaplan,et al.  Identification of HLA-A2–restricted CD8+ Cytotoxic T Cell Responses in Primary Biliary Cirrhosis , 2002, The Journal of Experimental Medicine.

[113]  F. Ronchese,et al.  Tumor-Specific Tc1, But Not Tc2, Cells Deliver Protective Antitumor Immunity1 , 2001, The Journal of Immunology.

[114]  N. Pardigon,et al.  Relative Diabetogenic Properties of Islet-Specific Tc1 and Tc2 Cells in Immunocompetent Hosts1 , 2000, The Journal of Immunology.

[115]  T. Tanimoto,et al.  Serum interferon‐gamma‐inducing factor/IL‐18 levels in primary biliary cirrhosis , 2000, Clinical and experimental immunology.

[116]  A. Cerwenka,et al.  Migration Kinetics and Final Destination of  Type 1 and Type 2 CD8 Effector Cells Predict Protection against Pulmonary Virus Infection , 1999, The Journal of experimental medicine.

[117]  A. Lerner Melanoma and vitiligo. , 1997, Cancer immunology, immunotherapy : CII.

[118]  G. Mullin,et al.  Cytokine mRNA expression in the liver of patients with primary biliary cirrhosis (PBC) and chronic hepatitis B (CHB) , 1996, Clinical and experimental immunology.

[119]  R. Martuza,et al.  Treatment of glioma by engineered interleukin 4-secreting cells. , 1993, Cancer research.

[120]  P. Leder,et al.  Murine interleukin-4 displays potent anti-tumor activity in vivo , 1989, Cell.

[121]  P. Kulkarni,et al.  Cholangiocarcinoma associated with biliary cirrhosis due to congenital biliary atresia. , 1977, American journal of diseases of children.