Basic Principles and Practical Applications of the Cahn–Hilliard Equation

The celebrated Cahn–Hilliard (CH) equation was proposed to model the process of phase separation in binary alloys by Cahn and Hilliard. Since then the equation has been extended to a variety of chemical, physical, biological, and other engineering fields such as spinodal decomposition, diblock copolymer, image inpainting, multiphase fluid flows, microstructures with elastic inhomogeneity, tumor growth simulation, and topology optimization. Therefore, it is important to understand the basic mechanism of the CH equation in each modeling type. In this paper, we review the applications of the CH equation and describe the basic mechanism of each modeling type with helpful references and computational simulation results.

[1]  K. Promislow,et al.  On the unconditionally gradient stable scheme for the Cahn-Hilliard equation and its implementation with Fourier method , 2013 .

[2]  Danielle Hilhorst,et al.  Formal asymptotic limit of a diffuse-interface tumor-growth model , 2015 .

[3]  Matthias Kotschote,et al.  Strong solutions in the dynamical theory of compressible fluid mixtures , 2013, 1306.2565.

[4]  Shiwei Zhou,et al.  Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition , 2006 .

[5]  M. Fernandino,et al.  The least squares spectral element method for the Cahn-Hilliard equation , 2011 .

[6]  Shenyang Y. Hu,et al.  A phase-field model for evolving microstructures with strong elastic inhomogeneity , 2001 .

[7]  R. Travasso,et al.  The phase-field model in tumor growth , 2011 .

[8]  G. Tierra,et al.  Numerical Methods for Solving the Cahn–Hilliard Equation and Its Applicability to Related Energy-Based Models , 2015 .

[9]  Dietmar Gross,et al.  The effect of elastic inhomogeneity on equilibrium and stability of a two particle morphology , 1998 .

[10]  Jie Shen,et al.  Morphological evolution during phase separation and coarsening with strong inhomogeneous elasticity , 2001 .

[11]  M. Hassan Farshbaf-Shaker,et al.  A phase field approach for optimal boundary control of damage processes in two-dimensional viscoelastic media , 2015, 1502.02952.

[12]  Junseok Kim,et al.  A phase-field approach for minimizing the area of triply periodic surfaces with volume constraint , 2010, Comput. Phys. Commun..

[13]  B. Blanpain,et al.  An introduction to phase-field modeling of microstructure evolution , 2008 .

[14]  Xiaobing Feng,et al.  Fully Discrete Finite Element Approximations of the Navier-Stokes-Cahn-Hilliard Diffuse Interface Model for Two-Phase Fluid Flows , 2006, SIAM J. Numer. Anal..

[15]  Junseok Kim,et al.  A continuous surface tension force formulation for diffuse-interface models , 2005 .

[16]  Steven M. Wise,et al.  An adaptive multigrid algorithm for simulating solid tumor growth using mixture models , 2011, Math. Comput. Model..

[17]  John W. Cahn,et al.  On Spinodal Decomposition , 1961 .

[18]  Long-Qing Chen,et al.  Computer simulation of structural transformations during precipitation of an ordered intermetallic phase , 1991 .

[19]  P. Fratzl,et al.  A Possible Criterion for Slowing Down of Precipitate Coarsening due to Elastic Misfit Interactions , 1995 .

[20]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[21]  Numerical analysis of phase decomposition in A-B binary alloys using Cahn-Hilliard equations , 2013 .

[22]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[23]  Steven M. Wise,et al.  Nonlinear Modeling and Simulation of Tumor Growth , 2008 .

[24]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[25]  Yunzhi Wang,et al.  Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap , 1993 .

[26]  Mark F. Horstemeyer,et al.  Effects of internal stresses and intermediate phases on the coarsening of coherent precipitates: A phase-field study , 2012 .

[27]  Seunggyu Lee,et al.  An efficient numerical method for evolving microstructures with strong elastic inhomogeneity , 2015 .

[28]  Héctor D. Ceniceros,et al.  Computation of multiphase systems with phase field models , 2002 .

[29]  Y. Nishiura,et al.  Analytical solutions describing the phase separation driven by a free energy functional containing a long-range interaction term. , 1999, Chaos.

[30]  Seunggyu Lee,et al.  Energy-minimizing wavelengths of equilibrium states for diblock copolymers in the hex-cylinder phase , 2015 .

[31]  Jaemin Shin,et al.  Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation , 2014 .

[32]  Moulay Hicham Tber,et al.  An adaptive finite-element Moreau–Yosida-based solver for a non-smooth Cahn–Hilliard problem , 2011, Optim. Methods Softw..

[33]  Madalina Petcu,et al.  A numerical analysis of the Cahn–Hilliard equation with non-permeable walls , 2014, Numerische Mathematik.

[34]  K. Kawasaki,et al.  Equilibrium morphology of block copolymer melts , 1986 .

[35]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[36]  Jaemin Shin,et al.  Numerical analysis of energy-minimizing wavelengths of equilibrium states for diblock copolymers , 2014 .

[37]  A. G. Khachaturi︠a︡n Theory of structural transformations in solids , 1983 .

[38]  Mirko Maraldi,et al.  A unified thermodynamic framework for the modelling of diffusive and displacive phase transitions , 2012 .

[39]  Olga Wodo,et al.  Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem , 2011, J. Comput. Phys..

[40]  Martin Heida,et al.  On the derivation of thermodynamically consistent boundary conditions for the Cahn-Hilliard-Navier-Stokes system , 2013 .

[41]  Yibao Li,et al.  FAST AND AUTOMATIC INPAINTING OF BINARY IMAGES USING A PHASE-FIELD MODEL , 2009 .

[42]  J. K. Lee Elastic Stress and Microstructural Evolution , 1998 .

[43]  Jong K. Lee,et al.  A study on coherency strain and precipitate morphologyvia a discrete atom method , 1996 .

[44]  Mark A. Peletier,et al.  On the Phase Diagram for Microphase Separation of Diblock Copolymers: An Approach via a Nonlocal Cahn--Hilliard Functional , 2009, SIAM J. Appl. Math..