Role of Minor Sc Addition on Precipitation and Mechanical Properties of a New Al-Cu-Li Alloy Under T8 Temper

[1]  Kanghua Chen,et al.  Effects of non-isothermal aging on microstructure, mechanical properties and corrosion resistance of 2A14 aluminum alloy , 2020 .

[2]  Yunlong Ma,et al.  The effect of Ag element on the microstructure characteristic evolution of an Al–Cu–Li–Mg alloy , 2020 .

[3]  Yangqiu Wang,et al.  Effects of Sc and Zr on microstructure and properties of 1420 aluminum alloy , 2019, Materials Characterization.

[4]  L. Zhen,et al.  Influence of Mg content on ageing precipitation behavior of Al-Cu-Li-x alloys , 2019, Materials Science and Engineering: A.

[5]  Jin-feng Li,et al.  Microstructures evolution and mechanical properties disparity in 2070 Al-Li alloy with minor Sc addition , 2018, Transactions of Nonferrous Metals Society of China.

[6]  F. Zheng,et al.  Effect of trace amounts of added Sc on microstructure and mechanical properties of 2055 aluminum alloy , 2018, Materials Characterization.

[7]  Jin-feng Li,et al.  Structures and tensile properties of Sc-containing 1445 Al-Li alloy sheet , 2018 .

[8]  Xuesong Zhang,et al.  Recent advances in the development of aerospace materials , 2018 .

[9]  Yunlong Ma,et al.  Variation of Aging Precipitates and Mechanical Strength of Al-Cu-Li Alloys Caused by Small Addition of Rare Earth Elements , 2017, Journal of Materials Engineering and Performance.

[10]  A. Deschamps,et al.  Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al-Cu-Li alloy , 2017 .

[11]  A. Deschamps,et al.  Influence of Mg and Li content on the microstructure evolution of Al Cu Li alloys during long-term ageing , 2017 .

[12]  D. H. Li,et al.  Effect of Different Aging Processes on the Microstructure and Mechanical Properties of a Novel Al-Cu-Li Alloy , 2016 .

[13]  A. Deschamps,et al.  The effect of minor solute additions on the precipitation path of an AlCuLi alloy , 2016 .

[14]  S. Ringer,et al.  Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys , 2016 .

[15]  T. Dorin,et al.  Size distribution and volume fraction of T(1) phase precipitates from TEM images: Direct measurements and related correction. , 2015, Micron.

[16]  Z. Zheng,et al.  Microstructure evolution of the 1469 Al–Cu–Li–Sc alloy during homogenization , 2014 .

[17]  Z. Zheng,et al.  Influence of AlCuSc Ternary Phase on the Microstructure and Properties of 1469 Alloy , 2014 .

[18]  Constantinos Soutis,et al.  Recent developments in advanced aircraft aluminium alloys , 2014 .

[19]  L. Rong,et al.  Effect of Sc addition on microstructure and mechanical properties of 1460 alloy , 2014 .

[20]  A. Deschamps,et al.  The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys , 2013 .

[21]  R. Rioja,et al.  The Evolution of Al-Li Base Products for Aerospace and Space Applications , 2012, Metallurgical and Materials Transactions A.

[22]  P. Rometsch,et al.  Effect of Pre-Ageing on the Artificial Ageing Response of Al-Mg-Si(-Cu) Alloys , 2010 .

[23]  K. P. Rao,et al.  Effect of scandium additions on microstructure and mechanical properties of Al–Zn–Mg alloy welds , 2007 .

[24]  Liu Yuan-fei Microstructure and properties of Al-Cu-Li-Zr alloys containing Sc , 2007 .

[25]  Hydro,et al.  SCANDIUM IN ALUMINIUM ALLOYS OVERVIEW : PHYSICAL METALLURGY , PROPERTIES AND APPLICATIONS , 2007 .

[26]  Ian Sinclair,et al.  Relations between microstructure, precipitation, age-formability and damage tolerance of Al-Cu-Mg-Li (Mn,Zr,Sc) alloys for age forming , 2006 .

[27]  Joanne L. Murray,et al.  Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I – Chemical compositions of Al3(Sc1−xZrx) precipitates , 2005 .

[28]  J. Røyset,et al.  Scandium in aluminium alloys , 2005 .

[29]  J. Robson A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium , 2004 .

[30]  K. S. Prasad,et al.  Effect of minor Sc additions on structure, age hardening and tensile properties of aluminium alloy AA8090 plate , 2004 .

[31]  C. Sigli,et al.  Nucleation of Al 3 Zr and Al 3 Sc in aluminum alloys: From kinetic Monte Carlo simulations to classical theory , 2004, cond-mat/0402137.

[32]  E. Abe,et al.  Transmission electron microscopy study of the evolution of precipitates in aged Al–Li–Cu alloys: the θ′ and T1 phases , 2003 .

[33]  F. J. Humphreys,et al.  Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behaviour of deformed aluminium , 2003 .

[34]  S. Lathabai,et al.  The effect of scandium on the microstructure, mechanical properties and weldability of a cast Al–Mg alloy , 2002 .

[35]  David C. Dunand,et al.  Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys , 2002 .

[36]  N. I. Kolobnev Aluminum-Lithium Alloys with Scandium , 2002 .

[37]  Emmanuelle A. Marquis,et al.  Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys , 2001 .

[38]  Y. Miura,et al.  Determination of Vacancy-Sc Interaction Energy by Electrical Resistivity Measurements , 2000 .

[39]  V. V. Zakharov,et al.  Scientific principles of making an alloying addition of scandium to aluminium alloys , 2000 .

[40]  T. Gladman,et al.  Precipitation hardening in metals , 1999 .

[41]  P. Kelly,et al.  The determination of foil thickness by scanning transmission electron microscopy , 1975 .

[42]  H. Kimura,et al.  A resistometric study on the role of quenched-in vacancies in ageing of Al-Cu alloys , 1962 .