On the Decreasing Power of Kernel and Distance Based Nonparametric Hypothesis Tests in High Dimensions
暂无分享,去创建一个
Barnabás Póczos | Larry A. Wasserman | Aarti Singh | Sashank J. Reddi | Aaditya Ramdas | L. Wasserman | Aarti Singh | Aaditya Ramdas | B. Póczos
[1] W. Rudin,et al. Fourier Analysis on Groups. , 1965 .
[2] P. Massart,et al. Estimation of Integral Functionals of a Density , 1995 .
[3] B. Laurent. Efficient estimation of integral functionals of a density , 1996 .
[4] G. Kerkyacharian,et al. Estimating nonquadratic functionals of a density using Haar wavelets , 1996 .
[5] A. Hero,et al. Estimation of Renyi information divergence via pruned minimal spanning trees , 1999, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS '99.
[6] Bernhard Schölkopf,et al. Measuring Statistical Dependence with Hilbert-Schmidt Norms , 2005, ALT.
[7] Maria L. Rizzo,et al. Measuring and testing dependence by correlation of distances , 2007, 0803.4101.
[8] Bernhard Schölkopf,et al. A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..
[9] Sivaraman Balakrishnan,et al. Optimal kernel choice for large-scale two-sample tests , 2012, NIPS.
[10] Gert R. G. Lanckriet,et al. On the empirical estimation of integral probability metrics , 2012 .
[11] Sivaraman Balakrishnan. Finding and Leveraging Structure in Learning Problems , 2012 .
[12] Kenji Fukumizu,et al. Equivalence of distance-based and RKHS-based statistics in hypothesis testing , 2012, ArXiv.
[13] Gábor J. Székely,et al. The distance correlation t-test of independence in high dimension , 2013, J. Multivar. Anal..