Dynamic algorithms: new worst-case and instance-optimal bounds via new connections

This thesis studies a series of questions about dynamic algorithms which are algorithms for quickly maintaining some information of an input data undergoing a sequence of updates. The first questio ...

[1]  Erik D. Demaine,et al.  Logarithmic Lower Bounds in the Cell-Probe Model , 2005, SIAM J. Comput..

[2]  Kurt Mehlhorn,et al.  Pattern-Avoiding Access in Binary Search Trees , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[3]  Robert E. Tarjan,et al.  A Back-to-Basics Empirical Study of Priority Queues , 2014, ALENEX.

[4]  Robert E. Tarjan,et al.  Faster Scaling Algorithms for Network Problems , 1989, SIAM J. Comput..

[5]  Christian Wulff-Nilsen,et al.  Faster Fully-Dynamic Minimum Spanning Forest , 2014, ESA.

[6]  J. Ian Munro,et al.  On the Competitiveness of Linear Search , 2000, ESA.

[7]  Michael Elkin An Unconditional Lower Bound on the Time-Approximation Trade-off for the Distributed Minimum Spanning Tree Problem , 2006, SIAM J. Comput..

[8]  Santosh S. Vempala,et al.  On clusterings-good, bad and spectral , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[9]  David Peleg,et al.  Tight Bounds for Distributed Minimum-Weight Spanning Tree Verification , 2013, Theory of Computing Systems.

[10]  Monika Henzinger,et al.  Decremental Single-Source Shortest Paths on Undirected Graphs in Near-Linear Total Update Time , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[11]  Baruch Awerbuch,et al.  Optimal distributed algorithms for minimum weight spanning tree, counting, leader election, and related problems , 1987, STOC.

[12]  Christian Wulff-Nilsen,et al.  Dynamic Minimum Spanning Forest with Subpolynomial Worst-Case Update Time , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[13]  Gabriel Nivasch,et al.  Improved bounds and new techniques for Davenport--Schinzel sequences and their generalizations , 2008, SODA.

[14]  Richard Peng,et al.  Almost-linear-time algorithms for Markov chains and new spectral primitives for directed graphs , 2016, STOC.

[15]  Boaz Patt-Shamir,et al.  Fast Routing Table Construction Using Small Messages , 2012, ArXiv.

[16]  Shay Kutten,et al.  Fast Distributed Construction of Small k-Dominating Sets and Applications , 1998, J. Algorithms.

[17]  David Peleg,et al.  Distributed Algorithms for Network Diameter and Girth , 2012, ICALP.

[18]  Aleksander Madry,et al.  Faster approximation schemes for fractional multicommodity flow problems via dynamic graph algorithms , 2010, STOC '10.

[19]  Richard Cole,et al.  On the Dynamic Finger Conjecture for Splay Trees. Part II: The Proof , 2000, SIAM J. Comput..

[20]  R. Chaudhuri,et al.  Splaying a search tree in preorder takes linear time , 1993, SIGA.

[21]  Haim Kaplan,et al.  Unique maximum matching algorithms , 1999, STOC '99.

[22]  Nisheeth K. Vishnoi,et al.  Approximating the exponential, the lanczos method and an Õ(m)-time spectral algorithm for balanced separator , 2011, STOC '12.

[23]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[24]  Erik D. Demaine,et al.  New bounds on optimal binary search trees , 2006 .

[25]  Andrew V. Goldberg,et al.  Scaling algorithms for the shortest paths problem , 1995, SODA '93.

[26]  Shiri Chechik,et al.  Deterministic decremental single source shortest paths: beyond the o(mn) bound , 2016, STOC.

[27]  Özgür Özkan,et al.  Why Some Heaps Support Constant-Amortized-Time Decrease-Key Operations, and Others Do Not , 2013, ICALP.

[28]  Monika Henzinger,et al.  Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector Multiplication Conjecture , 2015, STOC.

[29]  Michael L. Fredman Observations on the Complexity of Generating Quasi-Gray Codes , 1978, SIAM J. Comput..

[30]  Michael Elkin,et al.  Distributed approximation: a survey , 2004, SIGA.

[31]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001, JACM.

[32]  Robert E. Tarjan,et al.  Sequential access in splay trees takes linear time , 1985, Comb..

[33]  Chintan Shah,et al.  Computing Cut-Based Hierarchical Decompositions in Almost Linear Time , 2014, SODA.

[34]  Giuseppe F. Italiano,et al.  A new approach to dynamic all pairs shortest paths , 2004, JACM.

[35]  Zoltán Füredi,et al.  Davenport-Schinzel theory of matrices , 1992, Discret. Math..

[36]  Peter Bro Miltersen Cell probe complexity-a survey , 1999 .

[37]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[38]  Christoph Lenzen,et al.  Efficient distributed source detection with limited bandwidth , 2013, PODC '13.

[39]  Mihai Patrascu,et al.  Lower bound techniques for data structures , 2008 .

[40]  Kasper Green Larsen,et al.  Faster Online Matrix-Vector Multiplication , 2016, SODA.

[41]  Amir Abboud,et al.  Popular Conjectures as a Barrier for Dynamic Planar Graph Algorithms , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[42]  Pierre A. Humblet,et al.  A Distributed Algorithm for Minimum-Weight Spanning Trees , 1983, TOPL.

[43]  Robert E. Tarjan,et al.  Amortized efficiency of list update and paging rules , 1985, CACM.

[44]  Fan Chung Graham,et al.  Local Graph Partitioning using PageRank Vectors , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[45]  Thomas Schwentick,et al.  Dynamic complexity: recent updates , 2016, SIGL.

[46]  David Peleg,et al.  A Near-Tight Lower Bound on the Time Complexity of Distributed Minimum-Weight Spanning Tree Construction , 2000, SIAM J. Comput..

[47]  Zeyuan Allen Zhu,et al.  Flow-Based Algorithms for Local Graph Clustering , 2013, SODA.

[48]  Pan Peng,et al.  The Power of Vertex Sparsifiers in Dynamic Graph Algorithms , 2017, ESA.

[49]  Amr Elmasry,et al.  A Priority Queue with the Working-set Property , 2006, Int. J. Found. Comput. Sci..

[50]  Boaz Patt-Shamir,et al.  Fast Partial Distance Estimation and Applications , 2014, PODC.

[51]  Nicole Schweikardt,et al.  Answering Conjunctive Queries under Updates , 2017, PODS.

[52]  Bruce M. Kapron,et al.  Dynamic graph connectivity with improved worst case update time and sublinear space , 2015, ArXiv.

[53]  Stephen Alstrup,et al.  Constructing Light Spanners Deterministically in Near-Linear Time , 2017, ESA.

[54]  Amr Elmasry,et al.  On the sequential access theorem and deque conjecture for splay trees , 2004, Theor. Comput. Sci..

[55]  Thatchaphol Saranurak,et al.  Dynamic Matrix Inverse: Improved Algorithms and Matching Conditional Lower Bounds , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[56]  Monika Henzinger,et al.  Lower Bounds for Fully Dynamic Connectivity Problems in Graphs , 1995, Algorithmica.

[57]  Yuval Peres,et al.  Finding sparse cuts locally using evolving sets , 2008, STOC '09.

[58]  Søren Dahlgaard,et al.  On the Hardness of Partially Dynamic Graph Problems and Connections to Diameter , 2016, ICALP.

[59]  Özgür Özkan,et al.  A Tight Lower Bound for Decrease-Key in the Pure Heap Model , 2014, ArXiv.

[60]  Navin Goyal,et al.  On Dynamic Optimality for Binary Search Trees , 2011, ArXiv.

[61]  Danupon Nanongkai,et al.  Distributed Exact Weighted All-Pairs Shortest Paths in $\tilde O(n^{5/4})$ Rounds , 2017 .

[62]  Amr Elmasry,et al.  The Violation Heap: a Relaxed Fibonacci-like Heap , 2008, Discret. Math. Algorithms Appl..

[63]  Piotr Sankowski,et al.  Dynamic Transitive Closure via Dynamic Matrix Inverse , 2004 .

[64]  Uri Zwick,et al.  On Dynamic Shortest Paths Problems , 2004, ESA.

[65]  John H. Reif A Topological Approach to Dynamic Graph Connectivity , 1987, Inf. Process. Lett..

[66]  Christoph Lenzen,et al.  Approximate Undirected Transshipment and Shortest Paths via Gradient Descent , 2016, ArXiv.

[67]  Robert E. Tarjan,et al.  Strict fibonacci heaps , 2012, STOC '12.

[68]  Seth Pettie,et al.  Towards a final analysis of pairing heaps , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[69]  Kasper Green Larsen,et al.  Tight cell probe bounds for succinct Boolean matrix-vector multiplication , 2017, STOC.

[70]  Shay Solomon,et al.  Fully Dynamic Maximal Matching in Constant Update Time , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[71]  Shiri Chechik,et al.  Deterministic Partially Dynamic Single Source Shortest Paths for Sparse Graphs , 2017, SODA.

[72]  Gary L. Miller,et al.  Graph partitioning into isolated, high conductance clusters: theory, computation and applications to preconditioning , 2008, SPAA '08.

[73]  Mikkel Thorup,et al.  Worst-case update times for fully-dynamic all-pairs shortest paths , 2005, STOC '05.

[74]  John Iacono,et al.  In Pursuit of the Dynamic Optimality Conjecture , 2013, Space-Efficient Data Structures, Streams, and Algorithms.

[75]  Boaz Patt-Shamir,et al.  Near-Optimal Distributed Maximum Flow: Extended Abstract , 2015, PODC.

[76]  Adam Tauman Kalai,et al.  Static Optimality and Dynamic Search-Optimality in Lists and Trees , 2002, SODA '02.

[77]  László Kozma,et al.  Binary search trees, rectangles and patterns , 2016 .

[78]  Kurt Mehlhorn,et al.  Greedy Is an Almost Optimal Deque , 2015, WADS.

[79]  Di Wang,et al.  Local Flow Partitioning for Faster Edge Connectivity , 2017, SODA.

[80]  Richard Bellman,et al.  ON A ROUTING PROBLEM , 1958 .

[81]  Monika Henzinger,et al.  Maintaining Minimum Spanning Forests in Dynamic Graphs , 2001, SIAM J. Comput..

[82]  Mikkel Thorup,et al.  Sampling to provide or to bound: With applications to fully dynamic graph algorithms , 1997, Random Struct. Algorithms.

[83]  George F. Georgakopoulos,et al.  Chain-splay trees, or, how to achieve and prove loglogN-competitiveness by splaying , 2008, Inf. Process. Lett..

[84]  Richard Peng,et al.  Approximate Undirected Maximum Flows in O(mpolylog(n)) Time , 2014, SODA.

[85]  Kent Quanrud,et al.  Approximating the Held-Karp Bound for Metric TSP in Nearly-Linear Time , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[86]  P Barcelo,et al.  Counting Triangles under Updates in Worst-Case Optimal Time , 2019 .

[87]  Mikkel Thorup,et al.  Near-optimal fully-dynamic graph connectivity , 2000, STOC '00.

[88]  M. AdelsonVelskii,et al.  AN ALGORITHM FOR THE ORGANIZATION OF INFORMATION , 1963 .

[89]  Thomas Schwentick,et al.  Dynamic Complexity Theory Revisited , 2005, Theory of Computing Systems.

[90]  Luca Trevisan,et al.  Approximation algorithms for unique games , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[91]  Gábor Tardos,et al.  Excluded permutation matrices and the Stanley-Wilf conjecture , 2004, J. Comb. Theory, Ser. A.

[92]  Francis Y. L. Chin,et al.  An almost linear time and O(nlogn+e) Messages distributed algorithm for minimum-weight spanning trees , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[93]  Yin Tat Lee,et al.  An Almost-Linear-Time Algorithm for Approximate Max Flow in Undirected Graphs, and its Multicommodity Generalizations , 2013, SODA.

[94]  Kurt Mehlhorn,et al.  Multi-finger binary search trees , 2018, ISAAC.

[95]  Kenneth H. Rosen,et al.  Catalan Numbers , 2002 .

[96]  Piotr Sankowski,et al.  Faster dynamic matchings and vertex connectivity , 2007, SODA '07.

[97]  Thatchaphol Saranurak,et al.  Smooth heaps and a dual view of self-adjusting data structures , 2018, STOC.

[98]  Daniel M. Kane,et al.  The geometry of binary search trees , 2009, SODA.

[99]  Monika Henzinger,et al.  Conditional Hardness for Sensitivity Problems , 2017, ITCS.

[100]  Monika Henzinger,et al.  A deterministic almost-tight distributed algorithm for approximating single-source shortest paths , 2015, STOC.

[101]  Greg N. Frederickson,et al.  Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..

[102]  Ervin Györi,et al.  An Extremal Problem on Sparse 0-1 Matrices , 1991, SIAM J. Discret. Math..

[103]  Shang-Hua Teng,et al.  Spectral Sparsification of Graphs , 2008, SIAM J. Comput..

[104]  Peter Bro Miltersen,et al.  Complexity Models for Incremental Computation , 1994, Theor. Comput. Sci..

[105]  Roger Wattenhofer,et al.  Optimal distributed all pairs shortest paths and applications , 2012, PODC '12.

[106]  Monika Henzinger,et al.  Dynamic Algorithms for Graph Coloring , 2017, SODA.

[107]  Michael Elkin,et al.  A Simple Deterministic Distributed MST Algorithm, with Near-Optimal Time and Message Complexities , 2017, PODC.

[108]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[109]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[110]  John Iacono,et al.  Weighted dynamic finger in binary search trees , 2016, SODA.

[111]  Shay Solomon,et al.  Simple deterministic algorithms for fully dynamic maximal matching , 2012, STOC '13.

[112]  Allan Grønlund Jørgensen,et al.  New Unconditional Hardness Results for Dynamic and Online Problems , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[113]  Mihai Patrascu,et al.  Towards polynomial lower bounds for dynamic problems , 2010, STOC '10.

[114]  Peter Robinson,et al.  A time- and message-optimal distributed algorithm for minimum spanning trees , 2016, STOC.

[115]  Kasper Green Larsen,et al.  Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds , 2017, Electron. Colloquium Comput. Complex..

[116]  Timothy M. Chan Dynamic Subgraph Connectivity with Geometric Applications , 2006, SIAM J. Comput..

[117]  Richard Cole,et al.  On the Dynamic Finger Conjecture for Splay Trees. Part I: Splay Sorting log n-Block Sequences , 1995, SIAM J. Comput..

[118]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[119]  Danupon Nanongkai,et al.  Distributed approximation algorithms for weighted shortest paths , 2014, STOC.

[120]  Erik D. Demaine,et al.  Dynamic Optimality - Almost , 2004, FOCS.

[121]  Mikkel Thorup,et al.  Dynamic Graph Algorithms with Applications , 2000, SWAT.

[122]  Harold N. Gabow,et al.  Scaling algorithms for network problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[123]  Amr Elmasry,et al.  A priority queue with the time-finger property , 2012, J. Discrete Algorithms.

[124]  Tsvi Kopelowitz,et al.  Fully Dynamic Connectivity in O(log n(log log n)2) Amortized Expected Time , 2016, SODA.

[125]  Robert E. Tarjan,et al.  Relaxed heaps: an alternative to Fibonacci heaps with applications to parallel computation , 1988, CACM.

[126]  Eli Gafni,et al.  Improvements in the time complexity of two message-optimal election algorithms , 1985, PODC '85.

[127]  Thatchaphol Saranurak,et al.  Dynamic spanning forest with worst-case update time: adaptive, Las Vegas, and O(n1/2 - ε)-time , 2017, STOC.

[128]  Jonah Sherman,et al.  Nearly Maximum Flows in Nearly Linear Time , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[129]  Bruce M. Kapron,et al.  Dynamic graph connectivity in polylogarithmic worst case time , 2013, SODA.

[130]  Thomas Schwentick,et al.  Reachability Is in DynFO , 2015, ICALP.

[131]  Richard Peng,et al.  On Fully Dynamic Graph Sparsifiers , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[132]  Mikkel Thorup,et al.  Planning for Fast Connectivity Updates , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[133]  L. R. Ford,et al.  NETWORK FLOW THEORY , 1956 .

[134]  Robert E. Tarjan,et al.  Self-adjusting binary search trees , 1985, JACM.

[135]  Hsin-Hao Su,et al.  Almost-Tight Distributed Minimum Cut Algorithms , 2014, DISC.

[136]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[137]  Soumojit Sarkar,et al.  Fully dynamic randomized algorithms for graph spanners , 2012, TALG.

[138]  Richard Peng,et al.  Graph Sparsification, Spectral Sketches, and Faster Resistance Computation, via Short Cycle Decompositions , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[139]  Danupon Nanongkai,et al.  Nondeterminism and Completeness for Dynamic Algorithms , 2018 .

[140]  Daniel Dominic Sleator,et al.  O(log log n)-competitive dynamic binary search trees , 2006, SODA '06.

[141]  Robert E. Tarjan,et al.  The pairing heap: A new form of self-adjusting heap , 2005, Algorithmica.

[142]  Shimon Even,et al.  An On-Line Edge-Deletion Problem , 1981, JACM.

[143]  Kyle Fox,et al.  Upper Bounds for Maximally Greedy Binary Search Trees , 2011, WADS.

[144]  Christian Wulff-Nilsen Faster Deterministic Fully-Dynamic Graph Connectivity , 2016, Encyclopedia of Algorithms.

[145]  Michael Elkin,et al.  Distributed exact shortest paths in sublinear time , 2017, STOC.

[146]  Seth Pettie,et al.  Splay trees, Davenport-Schinzel sequences, and the deque conjecture , 2007, SODA '08.

[147]  Pan Peng,et al.  Dynamic Effective Resistances and Approximate Schur Complement on Separable Graphs , 2018, ESA.

[148]  Valerie King,et al.  Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[149]  Fabian Kuhn,et al.  Distributed Minimum Cut Approximation , 2013, DISC.

[150]  Yin Tat Lee,et al.  Efficient Inverse Maintenance and Faster Algorithms for Linear Programming , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[151]  Christian Wulff-Nilsen,et al.  Fully-dynamic minimum spanning forest with improved worst-case update time , 2016, STOC.

[152]  Mikkel Thorup,et al.  Faster Worst Case Deterministic Dynamic Connectivity , 2016, ESA.

[153]  Kurt Mehlhorn,et al.  Self-Adjusting Binary Search Trees: What Makes Them Tick? , 2015, ESA.

[154]  Nisheeth K. Vishnoi,et al.  Towards an SDP-based approach to spectral methods: a nearly-linear-time algorithm for graph partitioning and decomposition , 2010, SODA '11.

[155]  Russell Impagliazzo,et al.  Orthogonal Vectors is hard for first-order properties on sparse graphs , 2016, Electron. Colloquium Comput. Complex..

[156]  Timothy M. Chan Quake Heaps: A Simple Alternative to Fibonacci Heaps , 2013, Space-Efficient Data Structures, Streams, and Algorithms.

[157]  Faith Ellen,et al.  A little advice can be very helpful , 2012, SODA.

[158]  Jonah Sherman,et al.  Breaking the Multicommodity Flow Barrier for O(vlog n)-Approximations to Sparsest Cut , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[159]  David Eppstein,et al.  Sparsification-a technique for speeding up dynamic graph algorithms , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[160]  Amir Abboud,et al.  Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[161]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[162]  Robert E. Wilber Lower Bounds for Accessing Binary Search Trees with Rotations , 1989, SIAM J. Comput..

[163]  Satish Rao,et al.  Graph partitioning using single commodity flows , 2009, JACM.

[164]  Shang-Hua Teng,et al.  The Laplacian Paradigm: Emerging Algorithms for Massive Graphs , 2010, TAMC.

[165]  Ami Paz,et al.  Quadratic and Near-Quadratic Lower Bounds for the CONGEST Model , 2017, DISC.