Simulation and Sensor Optimization for Multifidelity Dynamics Model Calibration

This paper studies a multifidelity resource optimization methodology for simulation and data collection in the calibration of dynamics model parameters. Nonlinear dynamics systems require high-fide...

[1]  F. Udwadia Methodology for Optimum Sensor Locations for Parameter Identification in Dynamic Systems , 1994 .

[2]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[3]  M. Eldred,et al.  Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions , 2008 .

[4]  Zhen Hu,et al.  Calibration experimental design considering field response and model uncertainty , 2017 .

[5]  R. Montes-Iturrizaga,et al.  Optimal instrumentation of structures on flexible base for system identification , 1999 .

[6]  P. H. Kirkegaard,et al.  On the optimal location of sensors for parametric identification of linear structural systems , 1994 .

[7]  Anne Raich,et al.  Multi‐objective Optimization of Sensor and Excitation Layouts for Frequency Response Function‐Based Structural Damage Identification , 2012, Comput. Aided Civ. Infrastructure Eng..

[8]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[9]  Benjamin Peherstorfer,et al.  Survey of multifidelity methods in uncertainty propagation, inference, and optimization , 2018, SIAM Rev..

[10]  Joseph J. Hollkamp,et al.  Reduced-Order Models for Acoustic Response Prediction of a Curved Panel , 2011 .

[11]  Jorge E. Hurtado,et al.  Neural-network-based reliability analysis: a comparative study , 2001 .

[12]  M RaichAnne,et al.  Multi-objective Optimization of Sensor and Excitation Layouts for Frequency Response Function-Based Structural Damage Identification , 2012 .

[13]  Zhen Hu,et al.  Global sensitivity analysis-enhanced surrogate (GSAS) modeling for reliability analysis , 2016 .

[14]  Sankaran Mahadevan,et al.  Sensor placement for calibration of spatially varying model parameters , 2017, J. Comput. Phys..

[15]  Sankaran Mahadevan,et al.  Variable-fidelity model selection for stochastic simulation , 2014, Reliab. Eng. Syst. Saf..

[16]  Makola M. Abdullah,et al.  Placement of sensors/actuators on civil structures using genetic algorithms , 2001 .

[17]  Sankaran Mahadevan,et al.  BIAS MINIMIZATION IN GAUSSIAN PROCESS SURROGATE MODELING FOR UNCERTAINTY QUANTIFICATION , 2011 .

[18]  Loic Le Gratiet,et al.  RECURSIVE CO-KRIGING MODEL FOR DESIGN OF COMPUTER EXPERIMENTS WITH MULTIPLE LEVELS OF FIDELITY , 2012, 1210.0686.

[19]  C. Papadimitriou Pareto optimal sensor locations for structural identification , 2005 .

[20]  X. Huan,et al.  GRADIENT-BASED STOCHASTIC OPTIMIZATION METHODS IN BAYESIAN EXPERIMENTAL DESIGN , 2012, 1212.2228.

[21]  Agus Sudjianto,et al.  Blind Kriging: A New Method for Developing Metamodels , 2008 .

[22]  Xue Han,et al.  A response surface approach for structural reliability analysis using evidence theory , 2014, Adv. Eng. Softw..

[23]  Bernard Grossman,et al.  MULTIFIDELITY RESPONSE SURFACE MODEL FOR HSCT WING BENDING MATERIAL WEIGHT , 1998 .

[24]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[25]  Ian F. C. Smith,et al.  Hierarchical Sensor Placement Using Joint Entropy and the Effect of Modeling Error , 2014, Entropy.

[26]  Leo Wai-Tsun Ng,et al.  Multifidelity approaches for optimization under uncertainty , 2014 .

[27]  Sankaran Mahadevan,et al.  Structural Health Monitoring Sensor Placement Optimization Under Uncertainty , 2010 .

[28]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[29]  Robert Piché,et al.  Mixture surrogate models based on Dempster-Shafer theory for global optimization problems , 2011, J. Glob. Optim..

[30]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[31]  Jeong‐Soo Park Optimal Latin-hypercube designs for computer experiments , 1994 .

[32]  David J. C. MacKay,et al.  Information-Based Objective Functions for Active Data Selection , 1992, Neural Computation.

[33]  S. Mahadevan,et al.  Input-dependence effects in dynamics model calibration , 2018, Mechanical Systems and Signal Processing.

[34]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[35]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[36]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..

[37]  L. Swiler,et al.  Construction of response surfaces based on progressive-lattice-sampling experimental designs with application to uncertainty propagation , 2004 .

[38]  Ernesto Heredia-Zavoni,et al.  Optimal instrumentation of uncertain structural systems subject to earthquake ground motions , 1998 .

[39]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[40]  J. Beck,et al.  Entropy-Based Optimal Sensor Location for Structural Model Updating , 2000 .

[41]  R. Haftka,et al.  Ensemble of surrogates , 2007 .

[42]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[43]  Daniel C. Kammer Sensor placement for on-orbit modal identification and correlation of large space structures , 1991 .

[44]  Sankaran Mahadevan,et al.  Multi-fidelity approach to dynamics model calibration , 2016 .