Time-dependent coupling of Navier–Stokes and Darcy flows

A weak solution of the coupling of time-dependent incompressible Navier-Stokes equa- tions with Darcy equations is defined. The interface conditions include the Beavers-Joseph-Saffman condition. Existence and uniqueness of the weak solution are obtained by a constructive approach. The analysis is valid for weak regularity interfaces. Mathematics Subject Classification. 35Q30, 76N10.

[1]  VIVETTE GIRAULT,et al.  DG Approximation of Coupled Navier-Stokes and Darcy Equations by Beaver-Joseph-Saffman Interface Condition , 2009, SIAM J. Numer. Anal..

[2]  M. Gunzburger,et al.  Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition , 2010 .

[3]  J. Lions,et al.  Équations Différentielles Opérationnelles Et Problèmes Aux Limites , 1961 .

[4]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[5]  J. Lions Equations Differentielles Operationnelles , 1961 .

[6]  F. Rühs,et al.  J. L. Lions, Équations Différentielles Opérationnelles et Problèmes aux Limites. IX + 292 S. Berlin/Göttingen/Heidelberg 1961. Springer-Verlag. Preis geb. 64,— , 1962 .

[7]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[8]  T. Arbogast,et al.  Homogenization of a Darcy–Stokes system modeling vuggy porous media , 2006 .

[9]  B. Rivière,et al.  On the solution of the coupled Navier–Stokes and Darcy equations , 2009 .

[10]  A. Quarteroni,et al.  Navier-Stokes/Darcy Coupling: Modeling, Analysis, and Numerical Approximation , 2009 .

[11]  Fédérale De Lausanne,et al.  DOMAIN DECOMPOSITION METHODS FOR THE COUPLING OF SURFACE AND GROUNDWATER FLOWS , 2004 .

[12]  A. Quarteroni,et al.  Mathematical analysis of the Navier-Stokes / Darcy coupling , 2006 .

[13]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[14]  Alfio Quarteroni,et al.  Numerical analysis of the Navier–Stokes/Darcy coupling , 2010, Numerische Mathematik.

[15]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[16]  Ivan Yotov,et al.  Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..

[17]  T. Arbogast,et al.  A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium , 2007 .

[18]  Ivan Yotov,et al.  Coupling Stokes--Darcy Flow with Transport , 2009, SIAM J. Sci. Comput..

[19]  Willi Jäger,et al.  On The Interface Boundary Condition of Beavers, Joseph, and Saffman , 2000, SIAM J. Appl. Math..

[20]  V. Nassehi,et al.  Numerical Analysis of Coupled Stokes/Darcy Flows in Industrial Filtrations , 2006 .

[21]  A. R. Forsyth Theory of Differential Equations , 1961 .

[22]  P. Saffman On the Boundary Condition at the Surface of a Porous Medium , 1971 .

[23]  Béatrice Rivière,et al.  Analysis of time-dependent Navier–Stokes flow coupled with Darcy flow , 2008, J. Num. Math..

[24]  Béatrice Rivière,et al.  Locally Conservative Coupling of Stokes and Darcy Flows , 2005 .

[25]  Béatrice Rivière,et al.  A strongly conservative finite element method for the coupling of Stokes and Darcy flow , 2010, J. Comput. Phys..

[26]  G. M.,et al.  Theory of Differential Equations , 1902, Nature.

[27]  Béatrice Rivière,et al.  Primal Discontinuous Galerkin Methods for Time-Dependent Coupled Surface and Subsurface Flow , 2009, J. Sci. Comput..

[28]  Jinchao Xu,et al.  A Two-Grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow , 2007, SIAM J. Numer. Anal..

[29]  A. Quarteroni,et al.  Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations , 2003 .

[30]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[31]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[32]  B. Rivière,et al.  Numerical modelling of coupled surface and subsurface flow systems , 2010 .

[33]  Xue-Cheng Tai,et al.  A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..

[34]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[35]  Alfio Quarteroni,et al.  Robin-Robin Domain Decomposition Methods for the Stokes-Darcy Coupling , 2007, SIAM J. Numer. Anal..

[36]  Béatrice Rivière,et al.  Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems , 2005, J. Sci. Comput..

[37]  P. Hansbo,et al.  A unified stabilized method for Stokes' and Darcy's equations , 2007 .