Towards 100 Gbps wireless communication: Energy efficiency of ARQ, FEC, and RF-frontends

The paper introduces recent results of 100 Gbps wireless transceiver design. Furthermore, energy for retransmissions and forward error correction is compared. The presented model estimates energy boundaries, when the fragment selective retransmissions are more energy efficient than forward error correction (FEC). In the targeted system, the FEC is relatively expensive and the FEC mode with the highest throughput is not optimal in terms of consumed energy per bit. Moreover, we compare energy efficiency of our data link layer processor to the energy required to transmit a single bit on the physical layer. In most cases, gain obtained by forward error correction consumes more energy than the gain obtained by power amplifiers in the terahertz band.

[1]  David Blaauw,et al.  A 1.6-mm2 38-mW 1.5-Gb/s LDPC decoder enabled by refresh-free embedded DRAM , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[2]  Abdul Rehman Javed,et al.  System design and simulation of a PSSS based mixed signal transceiver for a 20 Gbps bandwidth limited communication link , 2015 .

[3]  Thomas Zwick,et al.  100 Gbit/s wireless link with mm-wave photonics , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[4]  Jun Terada,et al.  Terahertz wireless communications based on photonics technologies. , 2013, Optics express.

[5]  N. Kukutsu,et al.  Fully Integrated ASK Receiver MMIC for Terahertz Communications at 300 GHz , 2013, IEEE Transactions on Terahertz Science and Technology.

[6]  Andreas Wolf,et al.  Wireless 100 Gb/s: PHY layer overview and challenges in the THz freqency band , 2014, WAMICON 2014.

[7]  Rolf Kraemer,et al.  Parallel RS Error Correction Structures Dedicated for 100 Gbps Wireless Data Link Layer , 2015, 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB).

[8]  Gerhard Fettweis,et al.  A 60GHz LOS MIMO Backhaul Design Combining Spatial Multiplexing and Beamforming for a 100Gbps Throughput , 2014, GLOBECOM 2014.

[9]  I. Monroy,et al.  100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz). , 2011, Optics express.

[10]  Norbert Wehn,et al.  A new dimension of parallelism in ultra high throughput LDPC decoding , 2013, SiPS 2013 Proceedings.

[11]  Fan Li,et al.  A 400G optical wireless integration delivery system. , 2013, Optics express.

[12]  Tadao Nagatsuma,et al.  24 Gbit/s data transmission in 300 GHz band for future terahertz communications , 2012 .

[13]  A. Leuther,et al.  220 GHz wireless data transmission experiments up to 30 Gbit/s , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[14]  A. Tessmann,et al.  Multi-level 20 Gbit/s PSSS transmission using a linearity-limited 240 GHz wireless frontend , 2015, 2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS).

[15]  Janusz Grzyb,et al.  A Fully Integrated 240-GHz Direct-Conversion Quadrature Transmitter and Receiver Chipset in SiGe Technology , 2016, IEEE Transactions on Microwave Theory and Techniques.

[16]  Stephan Bunse,et al.  Towards 100G packet processing: Challenges and technologies , 2009 .

[17]  Ian F. Akyildiz,et al.  Joint physical and link layer error control analysis for nanonetworks in the Terahertz band , 2016, Wirel. Networks.

[18]  Rolf Kraemer,et al.  100 Gbps wireless – data link layer VHDL implementation , 2015 .

[19]  Rolf Kraemer,et al.  Design and Implementation of an Adaptive Algorithm for Hybrid Automatic Repeat Request , 2015, 2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems.

[20]  Valeria Teppati,et al.  94-GHz Large-Signal Operation of AlInN/GaN High-Electron-Mobility Transistors on Silicon With Regrown Ohmic Contacts , 2015, IEEE Electron Device Letters.

[21]  T. Zwick,et al.  Wireless sub-THz communication system with high data rate , 2013, Nature Photonics.

[22]  A. Hirata,et al.  120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission , 2006, IEEE Transactions on Microwave Theory and Techniques.

[23]  Rolf Kraemer,et al.  Simulation of 100 Gbps using Parallel Sequence Spread Spectrum modulation (PSSS) with 240 GHz radio , 2015 .

[24]  Emilien Peytavit,et al.  Ultrawide-Bandwidth Single-Channel 0.4-THz Wireless Link Combining Broadband Quasi-Optic Photomixer and Coherent Detection , 2014, IEEE Transactions on Terahertz Science and Technology.

[25]  M. Brzozowski,et al.  Gbps data link layer – from simulation to FPGA implementation , 2016 .

[26]  Thomas Zwick,et al.  A Novel 1$\times$4 Coupler for Compact and High-Gain Power Amplifier MMICs Around 250 GHz , 2015, IEEE Transactions on Microwave Theory and Techniques.