Bias-corrected population, size distribution, and impact hazard for the near-Earth objects

Abstract Utilizing the largest available data sets for the observed taxonomic (Binzel et al., 2004, Icarus 170, 259–294) and albedo (Delbo et al., 2003, Icarus 166, 116–130) distributions of the near-Earth object population, we model the bias-corrected population. Diameter-limited fractional abundances of the taxonomic complexes are A-0.2%; C-10%, D-17%, O-0.5%, Q-14%, R-0.1%, S-22%, U-0.4%, V-1%, X-34%. In a diameter-limited sample, ∼30% of the NEO population has jovian Tisserand parameter less than 3, where the D-types and X-types dominate. The large contribution from the X-types is surprising and highlights the need to better understand this group with more albedo measurements. Combining the C, D, and X complexes into a “dark” group and the others into a “bright” group yields a debiased dark-to-bright ratio of ∼1.6. Overall, the bias-corrected mean albedo for the NEO population is 0.14±0.02, for which an H magnitude of 17.8±0.1 translates to a diameter of 1 km, in close agreement with Morbidelli et al. (2002, Icarus 158 (2), 329–342). Coupling this bias corrected taxonomic and albedo model with the H magnitude dependent size distribution of (Stuart, 2001, Science 294, 1691–1693) yields a diameter distribution with 1090±180 NEOs with diameters larger than 1 km. As of 2004 June, the Spaceguard Survey has discovered 56% of the NEOs larger than 1 km. Using our size distribution model, and orbital distribution of (Stuart, 2001, Science 294, 1691–1693) we calculate the frequency of impacts into the Earth and the Moon. Globally destructive collisions (∼10 21 J) of asteroids 1 km or larger strike the Earth once every 0.60±0.1 Myr on average. Regionally destructive collisions with impact energy greater than 4×10 18 J (∼200 m diameter) strike the Earth every 56,000±6000 yr. Collisions in the range of the Tunguska event (4–8×10 16 J) occur every 2000–3000 yr. These values represent the average time between randomly spaced impacts; actual impacts could occur more or less closely spaced solely by chance. As a verification of these impact rates, the crater production function of Shoemaker et al. (1990, Geological Society of American Special Paper 247) has been updated by combining this new population model with a crater formation model to find that the observed crater production function on both the Earth and Moon agrees with the rate of crater production expected from the current population of NEOs.

[1]  Stephanie C. Werner,et al.  The Near-Earth Asteroid Size–Frequency Distribution: A Snapshot of the Lunar Impactor Size–Frequency Distribution , 2002 .

[2]  Alfred Edward Ringwood,et al.  Origin of the Earth and Moon , 1979 .

[3]  D. Hughes A new approach to the calculation of the cratering rate of the Earth over the last 125 ± 20 Myr , 2000 .

[4]  A. Harris,et al.  Physical Characteristics of Near-Earth Asteroids from Thermal Infrared Spectrophotometry☆ , 1999 .

[5]  William K. Hartmann,et al.  The Time-Dependent Intense Bombardment of the Primordial Earth/Moon System , 2000 .

[6]  J. S. Stuart,et al.  A Near-Earth Asteroid Population Estimate from the LINEAR Survey , 2001, Science.

[7]  G. Neukum,et al.  Crater Size Distributions and Impact Probabilities on Earth from Lunar, Terrestrial Planeta, and Asteroid Cratering Data , 1994 .

[8]  Harold F. Levison,et al.  Evolution of comets into asteroids , 1989 .

[9]  S. Croft Scaling of Complex Craters , 1985 .

[10]  D. Jewitt,et al.  LOW ALBEDOS AMONG EXTINCT COMET CANDIDATES , 2001, astro-ph/0104478.

[11]  M. Boslough,et al.  Shoemaker‐Levy 9 and Plume‐forming Collisions on Earth a , 1995 .

[12]  H. Redkey,et al.  A new approach. , 1967, Rehabilitation record.

[13]  D. Morrison The Spaceguard Survey: Report of the NASA International Near-Earth-Object Detection Workshop , 1992 .

[14]  G. Ryder,et al.  Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System , 2001 .

[15]  L. W. Alvarez,et al.  Extraterrestrial Cause for the Cretaceous-Tertiary Extinction , 1980, Science.

[16]  D. Tholen,et al.  Physical model of near-Earth asteroid 6489 Golevka (1991 JX) from optical and infrared observations , 1997 .

[17]  J. S. Stuart,et al.  Observational constraints on the number, albedos, size, and impact hazards of the near-Earth asteroids , 2003 .

[18]  J. Williams,et al.  A Three-Parameter Asteroid Taxonomy , 1989 .

[19]  Erzsébet Merényi,et al.  Classification of asteroid spectra using a neural network , 1994 .

[20]  D. Tholen,et al.  Lightcurve Analysis of Four New Monolithic Fast-Rotating Asteroids , 2002 .

[21]  Richard P. Binzel,et al.  Keck observations of near-Earth asteroids in the thermal infrared , 2003 .

[22]  D. Britt,et al.  Asteroid Density, Porosity, and Structure , 2002 .

[23]  A. Harris,et al.  SPIN VECTOR, SHAPE, AND SIZE OF THE AMOR ASTEROID (6053) 1993 BW3 , 1997 .

[24]  Alan W. Harris,et al.  On the Revision of Radiometric Albedos and Diameters of Asteroids , 1997 .

[25]  Richard P. Binzel,et al.  Small main-belt asteroid spectroscopic survey: Initial results , 1995 .

[26]  István Csabai,et al.  Comparison of Positions and Magnitudes of Asteroids Observed in the Sloan Digital Sky Survey with Those Predicted for Known Asteroids , 2002 .

[27]  A. Harris,et al.  Thermal Infrared Spectrophotometry of the Near-Earth Asteroids 2100 Ra-Shalom and 1991 EE , 1998 .

[28]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[29]  D. Rabinowitz,et al.  A reduced estimate of the number of kilometre-sized near-Earth asteroids , 2000, Nature.

[30]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: The Observations , 2002 .

[31]  M. S. Matthews,et al.  Hazards Due to Comets and Asteroids , 1992 .

[32]  Z. Sekanina Evidence for Asteroidal Origin of the Tunguska Object , 1998 .

[33]  F. Shelly,et al.  Lincoln Near-Earth Asteroid Program (LINEAR) , 2000 .

[34]  Eugene M. Shoemaker,et al.  Asteroid and comet flux in the neighborhood of the earth , 1988 .

[35]  D. Jewitt,et al.  On the relative numbers of C types and S types among near-earth asteroids , 1989 .

[36]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[37]  D. Tholen,et al.  Asteroid Taxonomy from Cluster Analysis of Photometry. , 1984 .

[38]  Schelte J. Bus,et al.  Compositional structure in the asteroid belt: Results of a spectroscopic survey , 1999 .

[39]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[40]  Elisabetta Pierazzo,et al.  A Reevaluation of Impact Melt Production , 1997 .

[41]  G. Neukum,et al.  Size-frequency distributions of planetary impact craters and asteroids , 2001 .

[42]  G. Hahn,et al.  Physical Properties of Near-Earth Objects , 2002 .

[43]  H. N. Russell,et al.  On the Albedo of the Planets and Their Satellites. , 1916, Proceedings of the National Academy of Sciences of the United States of America.

[44]  W. Bottke,et al.  Asteroidal collision probabilities , 1993 .

[45]  Robert Jedicke,et al.  From Magnitudes to Diameters: The Albedo Distribution of Near Earth Objects and the Earth Collision Hazard , 2002 .

[46]  Richard Greenberg Orbital interactions - A new geometrical formalism , 1982 .

[47]  A. Harris A New Estimate of the Population of Small NEAs , 2002 .

[48]  R. Kallenbach,et al.  Chronology and Evolution of Mars , 2001 .

[49]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[50]  Alan W. Harris,et al.  Asteroids in the Thermal Infrared , 2002 .

[51]  D. Morrison,et al.  Dealing with the Impact Hazard , 2002 .

[52]  Richard P. Binzel,et al.  Observed spectral properties of near-Earth objects: results for population distribution, source regions, and space weathering processes , 2004 .

[53]  Jedicke,et al.  Understanding the distribution of near-earth asteroids , 1999, Science.

[54]  S. Pravdo,et al.  The Number of Kilometer-Sized Near-Earth Asteroids , 1999 .

[55]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[56]  Petr Pravec,et al.  Fast and Slow Rotation of Asteroids , 2000 .

[57]  H. Rickman,et al.  Collisional processes in the solar system , 2001 .

[58]  R. Jedicke,et al.  Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects , 2002 .