The utility of Next Generation Sequencing for molecular diagnostics in Rett syndrome

N. Baena | G. Antiñolo | S. Gökben | F. Martínez | P. Lapunzina | S. Derdak | J. Rosell | J. García-Peñas | F. Ramos | J. Armstrong | A. Roche | C. Ortez | M. Pineda | R. Velazquez | G. Csányi | I. Onsurbe | B. Pérez-Dueñas | Jean-Rémi Trotta | A. Macaya | J. Herranz | R. Arteaga | J. Campistol | M. Del Campo | Elena Martín | S. Vidal | M. Raspall | E. Galán | F. Mulas | J. Narbona | R. Cancho | C. Lahoz | D. Tortosa | S. Boronat | L. Troncoso | L. Blasco | E. Geán | N. Brandi | P. Pacheco | E. Guillén | M. Obón | Rosario Marín | E. Gerotina | P. Póo | M. E. Russi | A. Cobo | P. Gallano | M. Guitart | A. Patiño | J. I. Lao | S. García-Miñaúr | M. Serrano | A. Nascimento | M. Alsius | M. García-Barcina | M. García-Silva | M. J. Gamundi | J. Colomer | A. Fontalba | R. Parrilla | A. Vernet | M. de Toledo | P. Castro | A. Verdú | M. Toro | M. Carrascosa | M. Ruiz-Falcó | J. Torrents | Pilar Méndez | C. Ventura | Xènia Alonso | S. Roldán | Gloria González | R. Gassió | N. Núñez | M. Vila | C. Villar | E. Triviño | David Conejo | A. Campo | S. I. Pascual | M. Pérez-Poyato | R. Cortés | C. Vázquez | Sira Moreno | L. Aquino | I. Karačić | Gemma Iglesias | V. González | M. García | S. Scholl-Bürgi | Anna Duat | R. Fernández | R. Domingo | R. Candau | A. Sans | María José Corrales | F. Carratalá-Marco | E. Gutiérrez | E. Martínez-Salcedo | À. García-Cazorla | Gema Arriola | G. Mateo | I. Canós | M. Lluch | Beatriz Martínez | M.J. LAUTRE‐ECENARRO | A. Tendero | M. T. de Santos | M. Nieto | L. López | Luis González | Montserrat Aleu | F. Aguirre | C. Arellano | Tomás Camacho | M. Barcos | Nuria Belzunces | Jovaní Casano | Gabriel Cruz | Rosario Duque | A. Esparza | M. Fons | P. García | M. Garcia-Catalan | Belén Gil | M. Guitet | J. M. Gutiérrez | Asunción López-Ariztegui | Charles M. Lourenço Marquez | M. J. Mas | Amparo Morant Jimenez | T. Nunes | Emilio Orts | Eliodoro Puche | Cesar Ruiz | Jordi Samarra | V. Antonio | Ivan Sánchez | Xavier Sanmartin | Alfredo Santacana | Nuria Serrano | Pilar Martin-Tamayo | P. Vázquez | María del Mar O’Callaghan | Francisco Javier Montserrat Xènia Mercè Maria Guillermo Lour Aguirre Aleu Alonso Alsius Inmaculada A | Maria Inmaculada Amorós | Eulalia Turrón | J. González | D. Conejo

[1]  M. Esteller,et al.  Whole exome sequencing of Rett syndrome-like patients reveals the mutational diversity of the clinical phenotype , 2016, Human Genetics.

[2]  J. Lupski,et al.  Enrichment of mutations in chromatin regulators in people with Rett Syndrome lacking mutations in MECP2 , 2016, Genetics in Medicine.

[3]  H. Mefford,et al.  Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy , 2016, Journal of Medical Genetics.

[4]  D. Pinto,et al.  Identification of novel genetic causes of Rett syndrome-like phenotypes , 2016, Journal of Medical Genetics.

[5]  W. Kaufmann,et al.  Mutations in epilepsy and intellectual disability genes in patients with features of Rett syndrome , 2015, American journal of medical genetics. Part A.

[6]  J. Christodoulou,et al.  The Utility of Next-Generation Sequencing in Gene Discovery for Mutation-Negative Patients with Rett Syndrome , 2015, Front. Cell. Neurosci..

[7]  Marjolein Kriek,et al.  Next‐Generation Diagnostics: Gene Panel, Exome, or Whole Genome? , 2015, Human mutation.

[8]  G. Carvill,et al.  Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures. , 2015, American journal of human genetics.

[9]  T. de Ravel,et al.  Microdeletion of the escape genes KDM5C and IQSEC2 in a girl with severe intellectual disability and autistic features. , 2015, European journal of medical genetics.

[10]  Yujun Han,et al.  Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios , 2015, Genetics in Medicine.

[11]  Hye-Seung Lee,et al.  Developmental delay in Rett syndrome: data from the natural history study , 2014, Journal of Neurodevelopmental Disorders.

[12]  S. Zuberi,et al.  Dravet syndrome—From epileptic encephalopathy to channelopathy , 2014, Epilepsia.

[13]  Oriane Trouillard,et al.  De novo mutations in HCN1 cause early infantile epileptic encephalopathy , 2014, Nature Genetics.

[14]  Yuya Kobayashi,et al.  Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  J. Shendure,et al.  GABRA1 and STXBP1: Novel genetic causes of Dravet syndrome , 2014, Neurology.

[16]  Markus Wolff,et al.  GRIN2B Mutations in West Syndrome and Intellectual Disability with Focal Epilepsy , 2014, Annals of neurology.

[17]  Vivien Marx,et al.  Next-generation sequencing: The genome jigsaw , 2013, Nature.

[18]  E. Boerwinkle,et al.  dbNSFP v2.0: A Database of Human Non‐synonymous SNVs and Their Functional Predictions and Annotations , 2013, Human mutation.

[19]  R. Sinke,et al.  Targeted Next‐Generation Sequencing can Replace Sanger Sequencing in Clinical Diagnostics , 2013, Human mutation.

[20]  J. Shendure,et al.  Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1 , 2013, Nature Genetics.

[21]  J. Sweatt,et al.  Pitt–Hopkins Syndrome: intellectual disability due to loss of TCF4-regulated gene transcription , 2013, Experimental & Molecular Medicine.

[22]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[23]  J. Chelly,et al.  Refining the phenotype associated with MEF2C point mutations , 2013, neurogenetics.

[24]  Roderic Guigó,et al.  The GEM mapper: fast, accurate and versatile alignment by filtration , 2012, Nature Methods.

[25]  Gabor T. Marth,et al.  Haplotype-based variant detection from short-read sequencing , 2012, 1207.3907.

[26]  A. Clarke,et al.  Transcription Factor 4 and Myocyte Enhancer Factor 2C mutations are not common causes of Rett syndrome , 2012, American journal of medical genetics. Part A.

[27]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[28]  Pablo Cingolani,et al.  Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift , 2012, Front. Gene..

[29]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[30]  W. Kaufmann,et al.  Rett syndrome: Revised diagnostic criteria and nomenclature , 2010, Annals of neurology.

[31]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[32]  K. Buiting Prader–Willi syndrome and Angelman syndrome , 2010, American journal of medical genetics. Part C, Seminars in medical genetics.

[33]  H. Firth,et al.  Mutations in MEF2C from the 5q14.3q15 microdeletion syndrome region are a frequent cause of severe mental retardation and diminish MECP2 and CDKL5 expression , 2010, Human mutation.

[34]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[35]  Alessandra Renieri,et al.  FOXG1 is responsible for the congenital variant of Rett syndrome. , 2008, American journal of human genetics.

[36]  A. Ekici,et al.  A de novo 7.6Mb tandem duplication of 14q32.2-qter associated with primordial short stature with neurosecretory growth hormone dysfunction, distinct facial anomalies and mild developmental delay. , 2008, European journal of medical genetics.

[37]  H. Zoghbi,et al.  Specific mutations in Methyl-CpG-Binding Protein 2 confer different severity in Rett syndrome , 2008, Neurology.

[38]  W. Kaufmann,et al.  Investigating genotype–phenotype relationships in Rett syndrome using an international data set , 2008, Neurology.

[39]  Carol Bower,et al.  Rett syndrome in Australia: a review of the epidemiology. , 2006, The Journal of pediatrics.

[40]  Steffen Lenzner,et al.  Mutations in the polyglutamine binding protein 1 gene cause X-linked mental retardation , 2003, Nature Genetics.

[41]  G. Miltenberger-Miltenyi,et al.  Mutations and polymorphisms in the human methyl CpG‐binding protein MECP2 , 2003, Human mutation.

[42]  Andrew J. Grimm,et al.  RettBASE: The IRSA MECP2 variation database—a new mutation database in evolution , 2003, Human mutation.

[43]  F. Hanefeld,et al.  An update on clinically applicable diagnostic criteria in Rett syndrome. Comments to Rett Syndrome Clinical Criteria Consensus Panel Satellite to European Paediatric Neurology Society Meeting, Baden Baden, Germany, 11 September 2001. , 2002, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[44]  H. Zoghbi,et al.  Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 , 1999, Nature Genetics.

[45]  D. Mabin Diagnostic criteria for Rett syndrome. The Rett Syndrome diagnostic criteria work group Ann. Neurol , 1988, Neurophysiologie Clinique/Clinical Neurophysiology.

[46]  Jean Aicardi,et al.  A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome: Report of 35 cases , 1983, Annals of neurology.

[47]  A Rett,et al.  [On a unusual brain atrophy syndrome in hyperammonemia in childhood]. , 1966, Wiener medizinische Wochenschrift.

[48]  J. Datta,et al.  Comparison of custom capture for targeted next-generation DNA sequencing. , 2015, The Journal of molecular diagnostics : JMD.

[49]  H. Firth,et al.  Mutations in MEF2C from the 5q14.3q15 microdeletion syndrome region are a frequent cause of severe mental retardation and diminish MECP2 and CDKL5 expression , 2010, Human mutation.

[50]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..