Rudin-Shapiro-like polynomials in L4

We examine sequences of polynomials with {+1, -1} coefficients constructed using the iterations p(x) → p(x) ± x d+1 p * (-x), where d is the degree of p and p * is the reciprocal polynomial of p. If po = 1 these generate the Rudin-Shapiro polynomials, We show that the L4 norm of these polynomials is explicitly computable. We are particularly interested in the case where the iteration produces sequences with smallest possible asymptotic L4 norm (or, equivalently, with largest possible asymptotic merit factor). The Rudin-Shapiro polynomials form one such sequence. We determine all p 0 of degree less than 40 that generate sequences under the iteration with this property. These sequences have asymptotic merit factor 3. The first really distinct example has a p 0 of degree 19.

[1]  Tom Høholdt,et al.  Determination of the merit factor of Legendre sequences , 1988, IEEE Trans. Inf. Theory.

[2]  T. C. Hu,et al.  Combinatorial algorithms , 1982 .

[3]  S V Konjagin ON A PROBLEM OF LITTLEWOOD , 1982 .

[4]  J. Kahane Sur Les Polynomes a Coefficients Unimodulaires , 1980 .

[5]  A. Nijenhuis Combinatorial algorithms , 1975 .

[6]  T. Figiel,et al.  The Minimum Modulus of Polynomials with Coefficients of Modulus One , 1977 .

[7]  R. Lockhart,et al.  The expected _{} norm of random polynomials , 2000 .

[8]  David W. Boyd,et al.  On a problem of Byrnes concerning polynomials with restricted coefficients , 1997, Math. Comput..

[9]  J. E. Littlewood On the Mean Values of Certain Trigonometrical Polynomials , 1961 .

[10]  J. Beck Flat Polynomials on the unit Circle—Note on a Problem of Littlewood , 1991 .

[11]  J. Clunie THE MINIMUM MODULUS OF A POLYNOMIAL ON THE UNIT CIRCLE , 1959 .

[12]  D. Newman,et al.  The L 4 norm of a polynomial with coefficients , 1990 .

[13]  D. J. Newman,et al.  Null steering employing polynomials and restricted coefficients , 1988 .

[14]  MARCEL J. E. GOLAY,et al.  Sieves for low autocorrelation binary sequences , 1977, IEEE Trans. Inf. Theory.

[15]  R. Lockhart,et al.  THE EXPECTED Lp NORM OF RANDOM POLYNOMIALS , 2001 .

[16]  Paul Erdös,et al.  An inequality for the maximum of trigonometric polynomials , 1962 .

[17]  J. Littlewood Some problems in real and complex analysis , 1968 .

[18]  The modulus of polynomials with zeros on the unit circle: A problem of Erdös , 1991 .

[19]  H. Montgomery An exponential polynomial formed with the Legendre symbol , 1980 .

[20]  Marcel J. E. Golay The merit factor of Legendre sequences , 1983, IEEE Trans. Inf. Theory.

[21]  Tamás Erdélyi,et al.  LITTLEWOOD-TYPE PROBLEMS ON SUBARCS OF THE UNIT CIRCLE , 1997 .

[22]  Tamás Erdélyi,et al.  Markov-Bernstein type inequalities under Littlewood-type coefficient constraints☆ , 2000 .

[23]  S. Mertens Exhaustive search for low-autocorrelation binary sequences , 1996 .

[24]  J. E. Littlewood,et al.  On Polynomials ∑ ±nzm,∑ eαminzm,z=e0i , 1966 .

[25]  R. Salem,et al.  Some properties of trigonometric series whose terms have random signs , 1954 .

[26]  J. Kahane Some Random Series of Functions , 1985 .

[27]  Tom Høholdt,et al.  The merit factor of binary sequences related to difference sets , 1991, IEEE Trans. Inf. Theory.