Rudin-Shapiro-like polynomials in L4
暂无分享,去创建一个
[1] Tom Høholdt,et al. Determination of the merit factor of Legendre sequences , 1988, IEEE Trans. Inf. Theory.
[2] T. C. Hu,et al. Combinatorial algorithms , 1982 .
[3] S V Konjagin. ON A PROBLEM OF LITTLEWOOD , 1982 .
[4] J. Kahane. Sur Les Polynomes a Coefficients Unimodulaires , 1980 .
[5] A. Nijenhuis. Combinatorial algorithms , 1975 .
[6] T. Figiel,et al. The Minimum Modulus of Polynomials with Coefficients of Modulus One , 1977 .
[7] R. Lockhart,et al. The expected _{} norm of random polynomials , 2000 .
[8] David W. Boyd,et al. On a problem of Byrnes concerning polynomials with restricted coefficients , 1997, Math. Comput..
[9] J. E. Littlewood. On the Mean Values of Certain Trigonometrical Polynomials , 1961 .
[10] J. Beck. Flat Polynomials on the unit Circle—Note on a Problem of Littlewood , 1991 .
[11] J. Clunie. THE MINIMUM MODULUS OF A POLYNOMIAL ON THE UNIT CIRCLE , 1959 .
[12] D. Newman,et al. The L 4 norm of a polynomial with coefficients , 1990 .
[13] D. J. Newman,et al. Null steering employing polynomials and restricted coefficients , 1988 .
[14] MARCEL J. E. GOLAY,et al. Sieves for low autocorrelation binary sequences , 1977, IEEE Trans. Inf. Theory.
[15] R. Lockhart,et al. THE EXPECTED Lp NORM OF RANDOM POLYNOMIALS , 2001 .
[16] Paul Erdös,et al. An inequality for the maximum of trigonometric polynomials , 1962 .
[17] J. Littlewood. Some problems in real and complex analysis , 1968 .
[18] The modulus of polynomials with zeros on the unit circle: A problem of Erdös , 1991 .
[19] H. Montgomery. An exponential polynomial formed with the Legendre symbol , 1980 .
[20] Marcel J. E. Golay. The merit factor of Legendre sequences , 1983, IEEE Trans. Inf. Theory.
[21] Tamás Erdélyi,et al. LITTLEWOOD-TYPE PROBLEMS ON SUBARCS OF THE UNIT CIRCLE , 1997 .
[22] Tamás Erdélyi,et al. Markov-Bernstein type inequalities under Littlewood-type coefficient constraints☆ , 2000 .
[23] S. Mertens. Exhaustive search for low-autocorrelation binary sequences , 1996 .
[24] J. E. Littlewood,et al. On Polynomials ∑ ±nzm,∑ eαminzm,z=e0i , 1966 .
[25] R. Salem,et al. Some properties of trigonometric series whose terms have random signs , 1954 .
[26] J. Kahane. Some Random Series of Functions , 1985 .
[27] Tom Høholdt,et al. The merit factor of binary sequences related to difference sets , 1991, IEEE Trans. Inf. Theory.