A framework for fuzzy quantification models analysis

A framework for description of fuzzy quantification models is presented. Within this framework, the fuzzy quantified statements evaluation problem is described as the compatibility between the fuzzy quantifier and a fuzzy cardinality or a fuzzy aggregation measure. A list of desirable properties for quantification models is presented and those models that fit the framework are confronted with it.

[1]  Ronald R. Yager,et al.  Approximate reasoning as a basis for rule-based expert systems , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Ronald R. Yager,et al.  Counting the number of classes in a fuzzy set , 1993, IEEE Trans. Syst. Man Cybern..

[3]  D. S. Fernández Adquisición de relaciones entre atributos en bases de datos relacionales , 2000 .

[4]  A. Knoll,et al.  A formal theory of fuzzy natural language quantification and its role in granular computing , 2001 .

[5]  L. Kohout,et al.  FUZZY POWER SETS AND FUZZY IMPLICATION OPERATORS , 1980 .

[6]  M. Vila,et al.  Using OWA operator in flexible query processing , 1997 .

[7]  Etienne E. Kerre,et al.  An overview of fuzzy quantifiers. (II). Reasoning and applications , 1998, Fuzzy Sets Syst..

[8]  Ingo Glöckner DFS - An Axiomatic Approach to Fuzzy Quantification , 1997 .

[9]  H. Ritter,et al.  A Framework for Evaluating Approaches to Fuzzy Quantification , 1999 .

[10]  D. Dubois,et al.  Fuzzy cardinality and the modeling of imprecise quantification , 1985 .

[11]  Edward L. Keenan,et al.  A semantic characterization of natural language determiners , 1986 .

[12]  P. Bosc,et al.  Monotonic quantified statements and fuzzy integrals , 1994, NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige.

[13]  H. Zimmermann,et al.  Latent connectives in human decision making , 1980 .

[14]  Ronald R. Yager,et al.  A general approach to rule aggregation in fuzzy logic control , 1992, Applied Intelligence.

[15]  Anca L. Ralescu,et al.  A note on rule representation in expert systems , 1986, Inf. Sci..

[16]  Purificación Cariñena Amigo,et al.  Un modelo para la cuantificación de la persistencia en proposiciones temporales , 1998 .

[17]  R. Yager Connectives and quantifiers in fuzzy sets , 1991 .

[18]  Daniel Sánchez,et al.  Un método para la evaluación de sentencias con cuantificadores lingüísticos , 1998 .

[19]  D. Ralescu Cardinality, quantifiers, and the aggregation of fuzzy criteria , 1995 .

[20]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[21]  Daniel Sánchez,et al.  Fuzzy cardinality based evaluation of quantified sentences , 2000, Int. J. Approx. Reason..

[22]  Settimo Termini,et al.  A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory , 1972, Inf. Control..

[23]  Ronald R. Yager,et al.  Quantified Propositions in a Linguistic Logic , 1983, Int. J. Man Mach. Stud..

[24]  Lotfi A. Zadeh,et al.  A COMPUTATIONAL APPROACH TO FUZZY QUANTIFIERS IN NATURAL LANGUAGES , 1983 .

[25]  Senén Barro,et al.  Probabilistic evaluation of fuzzy quantified sentences: independence profile , 2001 .