Direct anisotropic quad-dominant remeshing

We present an extension of the anisotropic polygonal remeshing technique developed by Alliez et al. (2003). Our algorithm does not rely on a global parameterization of the mesh and therefore is applicable to arbitrary genus surfaces. We show how to exploit the structure of the original mesh in order to perform efficiently the proximity queries required in the line integration phase, thus improving dramatically the scalability and the performance of the original algorithm. Finally, we propose a technique for producing conforming quad-dominant meshes in isotropic regions as well by propagating directional information from the anisotropic regions.

[1]  N. S. Barnett,et al.  Private communication , 1969 .

[2]  E. D'Azevedo Are Bilinear Quadrilaterals Better Than Linear Triangles , 1993 .

[3]  Andrew P. Witkin,et al.  Free-form shape design using triangulated surfaces , 1994, SIGGRAPH.

[4]  R. B. Simpson Anisotropic mesh transformations and optimal error control , 1994 .

[5]  Paul S. Heckbert,et al.  A Pliant Method for Anisotropic Mesh Generation , 1996 .

[6]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[7]  Kenji Shimada,et al.  Quadrilateral Meshing with Directionality Control through the Packing of Square Cells , 1998, IMR.

[8]  H. Borouchaki,et al.  Adaptive triangular–quadrilateral mesh generation , 1998 .

[9]  Michael Garland,et al.  Optimal triangulation and quadric-based surface simplification , 1999, Comput. Geom..

[10]  Eduardo F. D'Azevedo,et al.  Are Bilinear Quadrilaterals Better Than Linear Triangles? , 2000, SIAM J. Sci. Comput..

[11]  Kenji Shimada,et al.  Anisotropic Triangulation of Parametric Surfaces via Close Packing of Ellipsoids , 2000, Int. J. Comput. Geom. Appl..

[12]  Aaron Hertzmann,et al.  Illustrating smooth surfaces , 2000, SIGGRAPH.

[13]  Christian Rössl,et al.  Line-art rendering of 3D-models , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[14]  Zoë J. Wood,et al.  Topological Noise Removal , 2001, Graphics Interface.

[15]  Leif Kobbelt,et al.  Resampling Feature and Blend Regions in Polygonal Meshes for Surface Anti‐Aliasing , 2001, Comput. Graph. Forum.

[16]  Xavier Tricoche,et al.  Vector and tensor field topology simplification, tracking, and visualization , 2002 .

[17]  Dani Lischinski,et al.  Bounded-distortion piecewise mesh parameterization , 2002, IEEE Visualization, 2002. VIS 2002..

[18]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[19]  Andrei Khodakovsky,et al.  Hybrid meshes: multiresolution using regular and irregular refinement , 2002, SCG '02.

[20]  Leif Kobbelt,et al.  OpenMesh: A Generic and Efficient Polygon Mesh Data Structure , 2002 .

[21]  Mariette Yvinec,et al.  Conforming Delaunay triangulations in 3D , 2002, SCG '02.

[22]  Bruno Lévy,et al.  Hierarchical least squares conformal map , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[23]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[24]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[25]  Andrei Khodakovsky,et al.  Multilevel Solvers for Unstructured Surface Meshes , 2005, SIAM J. Sci. Comput..

[26]  Pacific Conference on Computer Graphics and Applications , 2006 .