Luteolin downregulates TLR4, TLR5, NF-κB and p-p38MAPK expression, upregulates the p-ERK expression, and protects rat brains against focal ischemia

[1]  G. Qin,et al.  Postischemic administration of liposome-encapsulated luteolin prevents against ischemia-reperfusion injury in a rat middle cerebral artery occlusion model. , 2011, The Journal of nutritional biochemistry.

[2]  M. Corey,et al.  TLR5 as an Anti-Inflammatory Target and Modifier Gene in Cystic Fibrosis , 2010, The Journal of Immunology.

[3]  Wei Du,et al.  Baicalein is neuroprotective in rat MCAO model: Role of 12/15-lipoxygenase, mitogen-activated protein kinase and cytosolic phospholipase A2 , 2010, Pharmacology Biochemistry and Behavior.

[4]  Feng Niu,et al.  Human Urinary Kallidinogenase Suppresses Cerebral Inflammation in Experimental Stroke and Downregulates Nuclear Factor-κB , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  Wei Du,et al.  Tanshinone II A down-regulates HMGB1, RAGE, TLR4, NF-κB expression, ameliorates BBB permeability and endothelial cell function, and protects rat brains against focal ischemia , 2010, Brain Research.

[6]  Y. Liu,et al.  Oxymatrine Downregulates TLR4, TLR2, MyD88, and NF-κB and Protects Rat Brains against Focal Ischemia , 2010, Mediators of inflammation.

[7]  T. Theoharides Luteolin as a therapeutic option for multiple sclerosis , 2009, Journal of Neuroinflammation.

[8]  L. J. Eldik,et al.  Inflammatory cytokines stimulate the chemokines CCL2/MCP-1 and CCL7/MCP-7 through NFκB and MAPK dependent pathways in rat astrocytes , 2009, Brain Research.

[9]  Y. Liu,et al.  Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia , 2009, Brain Research.

[10]  S. Kim,et al.  Suppression of the TRIF-dependent signaling pathway of Toll-like receptors by luteolin. , 2009, Biochemical pharmacology.

[11]  Sung-Chun Tang,et al.  Toll-like receptors in neurodegeneration , 2009, Brain Research Reviews.

[12]  Jae Heun Lee,et al.  Daidzein administration in vivo reduces myocardial injury in a rat ischemia/reperfusion model by inhibiting NF-kappaB activation. , 2009, Life sciences.

[13]  N. Alles,et al.  NF-kappaB functions in osteoclasts. , 2009, Biochemical and biophysical research communications.

[14]  Bok-Ryang Kim,et al.  Luteolin suppresses cisplatin-induced apoptosis in auditory cells: possible mediation through induction of heme oxygenase-1 expression. , 2008, Journal of medicinal food.

[15]  M. D. Cotrim,et al.  Assessment of luteolin (3′,4′,5,7-tetrahydroxyflavone) neuropharmacological activity , 2008, Behavioural Brain Research.

[16]  K. Fukunaga,et al.  Neuroprotective effects of prostaglandin A1 in rat models of permanent focal cerebral ischemia are associated with nuclear factor‐κB inhibition and peroxisome proliferator‐activated receptor‐γ up‐regulation , 2008 .

[17]  L. Tao,et al.  Roles of NF-κB in central nervous system damage and repair , 2007 .

[18]  M. Mattson,et al.  Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits , 2007, Proceedings of the National Academy of Sciences.

[19]  J. Yi,et al.  Role of transcription factors in mediating post-ischemic cerebral inflammation and brain damage , 2007, Neurochemistry International.

[20]  Fan-Shiu Tsai,et al.  Effects of luteolin on learning acquisition in rats: involvement of the central cholinergic system. , 2007, Life sciences.

[21]  O. Hurtado,et al.  Toll-Like Receptor 4 Is Involved in Brain Damage and Inflammation After Experimental Stroke , 2007, Circulation.

[22]  Z. Zeng,et al.  Lipopolysaccharide (LPS) regulates TLR4 signal transduction in nasopharynx epithelial cell line 5-8F via NFkappaB and MAPKs signaling pathways. , 2007, Molecular immunology.

[23]  Y. Kumazawa,et al.  Immunomodulating effects of flavonoids on acute and chronic inflammatory responses caused by tumor necrosis factor alpha. , 2006, Current pharmaceutical design.

[24]  K. Kang,et al.  Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. , 2006, Biochemical pharmacology.

[25]  G. Gutiérrez‐Venegas,et al.  Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts. , 2006, European journal of pharmacology.

[26]  E. Tremoli,et al.  Activation of NF-kB and ERK1/2 after permanent focal ischemia is abolished by simvastatin treatment , 2006, Neurobiology of Disease.

[27]  T. Kielian Toll‐like receptors in central nervous system glial inflammation and homeostasis , 2006, Journal of neuroscience research.

[28]  S. Akira,et al.  Pathogen Recognition and Innate Immunity , 2006, Cell.

[29]  A. Majid,et al.  Ischemia and ischemic tolerance in the brain: an overview. , 2004, Neurotoxicology.

[30]  M. Yenari,et al.  Post-ischemic inflammation: molecular mechanisms and therapeutic implications , 2004, Neurological research.

[31]  P. G. Wells,et al.  Antisense Evidence for Nuclear Factor-κB–Dependent Embryopathies Initiated by Phenytoin-Enhanced Oxidative Stress , 2004 .

[32]  Shizuo Akira,et al.  Toll-like receptor signalling , 2004, Nature Reviews Immunology.

[33]  Liesbeth Geraets,et al.  Structural requirements for the flavonoid-mediated modulation of glutathione S-transferase P1-1 and GS-X pump activity in MCF7 breast cancer cells. , 2004, Biochemical pharmacology.

[34]  M. Abreu,et al.  Innate immunity and toll-like receptors: clinical implications of basic science research. , 2004, The Journal of pediatrics.

[35]  J. Cook,et al.  Review: Molecular mechanisms of endotoxin tolerance , 2004 .

[36]  M. Karjalainen‐Lindsberg,et al.  Nuclear Factor-&kgr;B Contributes to Infarction After Permanent Focal Ischemia , 2004 .

[37]  Ana M. Blanco,et al.  Ethanol-induced iNOS and COX-2 expression in cultured astrocytes via NF-kappa B. , 2004 .

[38]  Shizuo Akira,et al.  Toll-like Receptor Signaling* , 2003, Journal of Biological Chemistry.

[39]  Y. Yamori,et al.  Antioxidant nutrients and hypoxia/ischemia brain injury in rodents. , 2003, Toxicology.

[40]  R. Ravid,et al.  Broad Expression of Toll‐Like Receptors in the Human Central Nervous System , 2002, Journal of neuropathology and experimental neurology.

[41]  T. Lawrence,et al.  Anti-inflammatory lipid mediators and insights into the resolution of inflammation , 2002, Nature Reviews Immunology.

[42]  N. Rothwell,et al.  Cytokines and acute neurodegeneration , 2001, Nature Reviews Neuroscience.

[43]  S. Akira,et al.  The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5 , 2001, Nature.

[44]  S. Kassis,et al.  SB 239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia. , 2001, The Journal of pharmacology and experimental therapeutics.

[45]  W. R. Taylor,et al.  Convergence of redox-sensitive and mitogen-activated protein kinase signaling pathways in tumor necrosis factor-alpha-mediated monocyte chemoattractant protein-1 induction in vascular smooth muscle cells. , 2000, Arteriosclerosis, thrombosis, and vascular biology.

[46]  C. Ganote,et al.  Phosphorylation state of hsp27 and p38 MAPK during preconditioning and protein phosphatase inhibitor protection of rabbit cardiomyocytes. , 1999, Journal of molecular and cellular cardiology.

[47]  J. Megyesi,et al.  Mechanisms of renal repair and survival following acute injury. , 1998, Seminars in nephrology.

[48]  C. Sotak,et al.  A novel endothelin antagonist, A-127722, attenuates ischemic lesion size in rats with temporary middle cerebral artery occlusion: a diffusion and perfusion MRI study. , 1998, Stroke.

[49]  R. Adams,et al.  Medical and neurological complications of ischemic stroke: experience from the RANTTAS trial. RANTTAS Investigators. , 1998, Stroke.

[50]  Z. Cao,et al.  MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. , 1997, Immunity.

[51]  N. Maulik,et al.  Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts , 1996, FEBS letters.

[52]  Michael E. Greenberg,et al.  Opposing Effects of ERK and JNK-p38 MAP Kinases on Apoptosis , 1995, Science.

[53]  Jiahuai Han,et al.  Pro-inflammatory Cytokines and Environmental Stress Cause p38 Mitogen-activated Protein Kinase Activation by Dual Phosphorylation on Tyrosine and Threonine (*) , 1995, The Journal of Biological Chemistry.

[54]  R. Davis,et al.  MAPKs: new JNK expands the group. , 1994, Trends in biochemical sciences.

[55]  J T Hoff,et al.  Ischemic Brain Edema and the Osmotic Gradient between Blood and Brain , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[56]  L. Pitts,et al.  Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. , 1986, Stroke.

[57]  J. Jolkkonen,et al.  Challenges and possibilities of intravascular cell therapy in stroke. , 2009, Acta neurobiologiae experimentalis.

[58]  Á. Simonyi,et al.  Polyphenols in cerebral ischemia , 2007, Molecular Neurobiology.

[59]  A. Gewirtz,et al.  Flagellin/TLR5 responses in epithelia reveal intertwined activation of inflammatory and apoptotic pathways. , 2006, American journal of physiology. Gastrointestinal and liver physiology.

[60]  J. Cook,et al.  Molecular mechanisms of endotoxin tolerance. , 2004, Journal of endotoxin research.

[61]  P. Weinstein,et al.  Reversible middle cerebral artery occlusion without craniectomy in rats. , 1989, Stroke.