Caffeine enhances acute stimulant effect of morphine but inhibits morphine sensitization when assessed by ambulation of mice

[1]  T. Reisine Opioid analgesics and antagonists , 1996 .

[2]  U. Ungerstedt,et al.  Postsynaptic dopamine/adenosine interaction: II. Postsynaptic dopamine agonism and adenosine antagonism of methylxanthines in short-term reserpinized mice. , 1991, European journal of pharmacology.

[3]  U. Ungerstedt,et al.  Postsynaptic dopamine/adenosine interaction: I. Adenosine analogues inhibit dopamine D2-mediated behaviour in short-term reserpinized mice. , 1991, European journal of pharmacology.

[4]  K. Minneman,et al.  Role of adenosine receptors in caffeine tolerance. , 1991, The Journal of pharmacology and experimental therapeutics.

[5]  H. Kuribara,et al.  Interaction between caffeine and methamphetamine by means of ambulatory activity in mice. , 1989, Yakubutsu, seishin, kodo = Japanese journal of psychopharmacology.

[6]  H. Kuribara,et al.  Reverse tolerance to ambulation-increasing effects of methamphetamine and morphine in 6 mouse strains. , 1989, Japanese journal of pharmacology.

[7]  N. Swerdlow,et al.  Effects of naloxone on heroin-, amphetamine- and caffeine-stimulated locomotor activity in the rat , 1985, Pharmacology Biochemistry and Behavior.

[8]  D T Chou,et al.  Caffeine tolerance: behavioral, electrophysiological and neurochemical evidence. , 1985, Life sciences.

[9]  R. Mailman,et al.  SCH-23390: a selective D1 dopamine antagonist with potent D2 behavioral actions. , 1984, European journal of pharmacology.

[10]  M. Hirabayashi,et al.  [Development and characteristics of reverse tolerance to repeatedly administered morphine in mice manifested by enhanced motor activities]. , 1983, Nihon yakurigaku zasshi. Folia pharmacologica Japonica.

[11]  S G Holtzman,et al.  Complete, reversible, drug-specific tolerance to stimulation of locomotor activity by caffeine. , 1983, Life sciences.

[12]  H. Maeno,et al.  Selective binding of YM-09151-2, a new potent neuroleptic, to D2-dopaminergic receptors. , 1983, Japanese journal of pharmacology.

[13]  A. Barnett,et al.  SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. , 1983, The Journal of pharmacology and experimental therapeutics.

[14]  E. T. Iwamoto Locomotor activity and antinociception after putative mu, kappa and sigma opioid receptor agonists in the rat: influence of dopaminergic agonists and antagonists. , 1981, The Journal of pharmacology and experimental therapeutics.

[15]  S H Snyder,et al.  Adenosine receptors and behavioral actions of methylxanthines. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[16]  P. Spano,et al.  Genotype-dependent sensitivity to morphine: role of different opiate receptor populations , 1980, Brain Research.

[17]  D. Cardinali,et al.  Methylxanthines: possible mechanisms of action in brain , 1980 .

[18]  G. Mickley,et al.  Differential effects of localized lesions of n. accumbens on morphine- and amphetamine-induced locomotor hyperactivity in the C57BL/6J mouse. , 1979, Journal of comparative and physiological psychology.

[19]  B. Fredholm,et al.  Are methylxanthine effects due to antagonism of endogenous adenosine , 1979 .

[20]  O. Hornykiewicz,et al.  Effects of morphine on striatal dopamine metabolism: possible mechanism of its opposite effect on locomotor activity in rats and mice. , 1974, European journal of pharmacology.

[21]  M. Carter,et al.  Biogenic amines and narcotic effects. I. Modification of morphine-induced analgesia and motor activity after alteration of cerebral amine levels. , 1973, The Journal of pharmacology and experimental therapeutics.

[22]  C. Smith,et al.  Effects of narcotic analgesics upon the locomotor activity and brain catecholamine content of the mouse. , 1971, The Journal of pharmacology and experimental therapeutics.

[23]  L. Goodman,et al.  THE PHARMACOLOGICAL BASIS OF THERAPEUTICS , 1966 .