Modeling of Lossy Multiregion Substrates in Microelectronic Circuits Using Time-Domain Surface Integral Equations

In this work, the electromagnetic modeling of multiregion, finite-sized lossy substrates in microelectronic circuits is carried out utilizing time-domain surface integral equations. To reduce the additional computational complexity in the implementation caused by the decaying “wake” of the Green's function in lossy media, the resulting temporal convolution is addressed by the creation and use of an a priori exponential fitting table for discrete distances through Prony's method. © 2005 Wiley Periodicals, Inc. Microwave Opt Technol Lett 47: 68–73, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.21084

[1]  Agostino Monorchio,et al.  A space-time discretization criterion for a stable time-marching solution of the electric field integral equation , 1997 .

[2]  James G. Maloney,et al.  The use of surface impedance concepts in the finite-difference time-domain method , 1992 .

[3]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[4]  Chuanyi Yang,et al.  A time domain surface integral technique for mixed electromagnetic and circuit simulation , 2002, Electrical Performance of Electronic Packaging,.

[5]  E. Michielssen,et al.  A fast hybrid field-circuit simulator for transient analysis of microwave circuits , 2004, IEEE Transactions on Microwave Theory and Techniques.

[6]  Tatsuo Itoh,et al.  Full-wave analysis of packaged microwave circuits with active and nonlinear devices: an FDTD approach , 1997 .

[7]  C.-J.R. Shi,et al.  Generalized Kirchoff's current and Voltage law formulation for coupled circuit-electromagnetic Simulation with surface Integral equations , 2004, IEEE Transactions on Microwave Theory and Techniques.

[8]  Albert E. Ruehli,et al.  Three-dimensional interconnect analysis using partial element equivalent circuits , 1992 .

[9]  Andreas C. Cangellaris,et al.  Hybrid electromagnetic modeling of noise interactions in packaged electronics based on the partial-element equivalent-circuit formulation , 1997 .

[10]  Jose E. Schutt-Aine,et al.  An efficient implementation of surface impedance boundary conditions for the finite-difference time-domain method , 1995 .

[11]  Vikram Jandhyala,et al.  Integral equation based time domain coupled EM-circuit simulation for packaged conductors and dielectrics , 2003, Electrical Performance of Electrical Packaging (IEEE Cat. No. 03TH8710).

[12]  M.F. Wong,et al.  A new global time domain electromagnetic simulator of microwave circuits including lumped elements based on finite element method , 1997, 1997 IEEE MTT-S International Microwave Symposium Digest.

[13]  M. J. Bluck,et al.  The extension of time-domain integral equation analysis to scattering from imperfectly conducting bodies , 2001 .

[14]  Tatsuo Itoh,et al.  A global finite-element time-domain analysis of active nonlinear microwave circuits , 1999, IMS 1999.

[15]  Song-Yop Hahn,et al.  Implementation of hysteresis characteristics using the Preisach model with M-B variables , 1992 .

[16]  Boundary elements method computations of 3D transient scattering from lossy dielectric objects , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.

[17]  Tapan K. Sarkar,et al.  Numerical solution of time domain integral equations for arbitrarily shaped conductor/dielectric composite bodies , 2002 .

[18]  Yong Wang,et al.  Coupled electromagnetic-circuit simulation of arbitrarily-shaped conducting structures , 2001, IEEE 10th Topical Meeting on Electrical Performance of Electronic Packaging (Cat. No. 01TH8565).

[19]  R. Luebbers,et al.  The Finite Difference Time Domain Method for Electromagnetics , 1993 .

[20]  E. Michielssen,et al.  A novel scheme for the solution of the time-domain integral equations of electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[21]  T. Itoh,et al.  FDTD analysis of an active antenna , 1993, IEEE Microwave and Guided Wave Letters.

[22]  E. Michielssen,et al.  Fast analysis of transient scattering in lossy media , 2002, IEEE Antennas and Wireless Propagation Letters.

[23]  A. Ruehli,et al.  Nonorthogonal PEEC formulation for time- and frequency-domain EM and circuit modeling , 2003 .

[24]  Ramachandra Achar,et al.  Circuit analysis of electromagnetic radiation and field coupling effects for networks with embedded full-wave modules , 2000 .

[25]  V. Jandhyala,et al.  Coupled circuit-electromagnetic simulation with time domain integral equations , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).

[26]  George Papadopoulos,et al.  Full-wave PEEC time-domain method for the modeling of on-chipinterconnects , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[27]  Peilin Jiang,et al.  Temporal acceleration of time‐domain integral‐equation solvers for electromagnetic scattering from objects residing in lossy media , 2005 .