Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells.

A poly(3-hexylthiophene) (P3HT)-based inverted solar cell using indene-C60 bis-adduct (ICBA) as the acceptor achieved a high open-circuit voltage of 0.82 V due to ICBA's higher-lying lowest unoccupied molecular orbital level, leading to an exceptional power-conversion efficiency (PCE) of 4.8%. By incorporating a cross-linked fullerene interlayer, C-PCBSD, to further modulate the interface characteristics, the ICBA:P3HT-based inverted device exhibited an improved short-circuit current and fill factor, yielding a record high PCE of 6.2%.

[1]  Fei Huang,et al.  Development of new conjugated polymers with donor-pi-bridge-acceptor side chains for high performance solar cells. , 2009, Journal of the American Chemical Society.

[2]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[3]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[4]  Christoph J. Brabec,et al.  Interface modification for highly efficient organic photovoltaics , 2008 .

[5]  Hong Ma,et al.  High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer , 2008 .

[6]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[7]  Yang Yang,et al.  Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. , 2008, Journal of the American Chemical Society.

[8]  Yongfang Li,et al.  Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells. , 2010, Journal of the American Chemical Society.

[9]  Yang Yang,et al.  A polybenzo[1,2-b:4,5-b']dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells. , 2010, Angewandte Chemie.

[10]  Ye Tao,et al.  A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. , 2010, Journal of the American Chemical Society.

[11]  Vishal Shrotriya,et al.  Efficient inverted polymer solar cells , 2006 .

[12]  David L. Carroll,et al.  High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends , 2005 .

[13]  Gang Li,et al.  Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer , 2008 .

[14]  Guo-Qiang Lo,et al.  An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer , 2008 .

[15]  Yongfang Li,et al.  6.5% Efficiency of Polymer Solar Cells Based on poly(3‐hexylthiophene) and Indene‐C60 Bisadduct by Device Optimization , 2010, Advanced materials.

[16]  Luping Yu,et al.  Development of new semiconducting polymers for high performance solar cells. , 2009, Journal of the American Chemical Society.

[17]  Alex K.-Y. Jen,et al.  Thermally crosslinked hole-transporting layers for cascade hole-injection and effective electron-blocking/exciton-confinement in phosphorescent polymer light-emitting diodes , 2006 .

[18]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[19]  Xindong Zhang,et al.  Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer , 2008 .

[20]  Gang Li,et al.  Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. , 2009, Journal of the American Chemical Society.

[21]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[22]  M. Andersson,et al.  A planar copolymer for high efficiency polymer solar cells. , 2009, Journal of the American Chemical Society.

[23]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[24]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[25]  Alex K.-Y. Jen,et al.  Interfacial modification to improve inverted polymer solar cells , 2008 .

[26]  Christoph J. Brabec,et al.  Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact , 2006 .

[27]  Christoph J. Brabec,et al.  Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells , 2009 .

[28]  Pei-Jung Li,et al.  Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer. , 2010, Journal of the American Chemical Society.

[29]  Alex K.-Y. Jen,et al.  Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer , 2008 .

[30]  C. Grimes,et al.  High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays , 2007 .

[31]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.

[32]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[33]  Junbiao Peng,et al.  Solution-Processed Zinc Oxide Thin Film as a Buffer Layer for Polymer Solar Cells with an Inverted Device Structure , 2010 .

[34]  Fang‐Chung Chen,et al.  Spatial redistribution of the optical field intensity in inverted polymer solar cells , 2010 .

[35]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[36]  Bumjoon J. Kim,et al.  The influence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance. , 2008, Journal of the American Chemical Society.

[37]  Gang Li,et al.  Vertical Phase Separation in Poly(3‐hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells , 2009 .

[38]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[39]  Junbiao Peng,et al.  High-performance polymer heterojunction solar cells of a polysilafluorene derivative , 2008 .