From Argument Search to Argumentative Dialogue: A Topic-independent Approach to Argument Acquisition for Dialogue Systems

Despite the remarkable progress in the field of computational argumentation, dialogue systems concerned with argumentative tasks often rely on structured knowledge about arguments and their relations. Since the manual acquisition of these argument structures is highly time-consuming, the corresponding systems are inflexible regarding the topics they can discuss. To address this issue, we propose a combination of argumentative dialogue systems with argument search technology that enables a system to discuss any topic on which the search engine is able to find suitable arguments. Our approach utilizes supervised learning-based relation classification to map the retrieved arguments into a general tree structure for use in dialogue systems. We evaluate the approach with a state of the art search engine and a recently introduced dialogue model in an extensive user study with respect to the dialogue coherence. The results vary between the investigated topics (and hence depend on the quality of the underlying data) but are in some instances surprisingly close to the results achieved with a manually annotated argument structure.

[1]  Kazuki Sakai,et al.  Introduction method for argumentative dialogue using paired question-answering interchange about personality , 2018, SIGDIAL Conference.

[2]  Wolfgang Minker,et al.  Utilizing Argument Mining Techniques for Argumentative Dialogue Systems , 2018, IWSDS.

[3]  Anthony Hunter,et al.  A Persuasive Chatbot Using a Crowd-Sourced Argument Graph and Concerns , 2020, COMMA.

[4]  Opinion Building Based on the Argumentative Dialogue System BEA , 2019, IWSDS.

[5]  Emmanuel Hadoux,et al.  Comfort or safety? Gathering and using the concerns of a participant for better persuasion , 2019, Argument Comput..

[6]  C. Schindler Argumentative relation classification for argumentative dialogue systems , 2020 .

[7]  Sean Bechhofer,et al.  OWL: Web Ontology Language , 2009, Encyclopedia of Database Systems.

[8]  Peter Sprent,et al.  Fisher Exact Test , 2011, International Encyclopedia of Statistical Science.

[9]  Roy Bar-Haim,et al.  An autonomous debating system , 2021, Nature.

[10]  Benno Stein,et al.  Computational Argumentation Quality Assessment in Natural Language , 2017, EACL.

[11]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[12]  C. Cayrol,et al.  On the Acceptability of Arguments in Bipolar Argumentation Frameworks , 2005, ECSQARU.

[13]  Chris Callison-Burch,et al.  PerspectroScope: A Window to the World of Diverse Perspectives , 2019, ACL.

[14]  Iryna Gurevych,et al.  ArgumenText: Searching for Arguments in Heterogeneous Sources , 2018, NAACL.

[15]  Amita Misra,et al.  Debbie, the Debate Bot of the Future , 2017, IWSDS.

[16]  Wolfgang Minker,et al.  Increasing the Naturalness of an Argumentative Dialogue System Through Argument Chains , 2020, COMMA.

[17]  Kazuki Sakai,et al.  Hierarchical Argumentation Structure for Persuasive Argumentative Dialogue Generation , 2020, IEICE Trans. Inf. Syst..

[18]  Boris A. Galitsky,et al.  Enabling a Bot with Understanding Argumentation and Providing Arguments , 2019, Developing Enterprise Chatbots.

[19]  Wolfgang Minker,et al.  Evaluation of Argument Search Approaches in the Context of Argumentative Dialogue Systems , 2020, LREC.

[20]  Noam Slonim,et al.  Towards an argumentative content search engine using weak supervision , 2018, COLING.

[21]  Wolfgang Minker,et al.  Markov Games for Persuasive Dialogue , 2018, COMMA.

[22]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[23]  Roy Bar-Haim,et al.  From Arguments to Key Points: Towards Automatic Argument Summarization , 2020, ACL.

[24]  Kazuki Sakai,et al.  Creating Large-Scale Argumentation Structures for Dialogue Systems , 2018, LREC.

[25]  J. Fleiss Measuring nominal scale agreement among many raters. , 1971 .

[26]  Matthias Hagen,et al.  TARGER: Neural Argument Mining at Your Fingertips , 2019, ACL.

[27]  Rahul Goel,et al.  On Evaluating and Comparing Conversational Agents , 2018, ArXiv.

[28]  Henry Prakken,et al.  Coherence and Flexibility in Dialogue Games for Argumentation , 2005, J. Log. Comput..

[29]  Iryna Gurevych,et al.  Aspect-Controlled Neural Argument Generation , 2020, NAACL.

[30]  Matthias Hagen,et al.  Data Acquisition for Argument Search: The args.me Corpus , 2019, KI.

[31]  Iryna Gurevych,et al.  Classification and Clustering of Arguments with Contextualized Word Embeddings , 2019, ACL.

[32]  Torsten Zesch,et al.  Annotating and analyzing the interactions between meaning relations , 2019, LAW@ACL.

[33]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[34]  Wolfgang Minker,et al.  EVA: A Multimodal Argumentative Dialogue System , 2018, ICMI.

[35]  Iryna Gurevych,et al.  Annotating Argument Components and Relations in Persuasive Essays , 2014, COLING.

[36]  Francesca Toni,et al.  Towards relation based Argumentation Mining , 2015, ArgMining@HLT-NAACL.

[37]  Chris Reed,et al.  Argument Mining: A Survey , 2020, Computational Linguistics.

[38]  Iryna Gurevych,et al.  Parsing Argumentation Structures in Persuasive Essays , 2016, CL.

[39]  Iryna Gurevych,et al.  Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks , 2021, NAACL.

[40]  Eunsol Choi,et al.  QuAC: Question Answering in Context , 2018, EMNLP.

[41]  Sarit Kraus,et al.  Strategical Argumentative Agent for Human Persuasion , 2016, ECAI.

[42]  Cam-Tu Nguyen,et al.  Dave the debater: a retrieval-based and generative argumentative dialogue agent , 2018, ArgMining@EMNLP.

[43]  Benno Stein,et al.  Building an Argument Search Engine for the Web , 2017, ArgMining@EMNLP.