Multiple roles for Piwi in silencing Drosophila transposons.

Silencing of transposons in the Drosophila ovary relies on three Piwi family proteins--Piwi, Aubergine (Aub), and Ago3--acting in concert with their small RNA guides, the Piwi-interacting RNAs (piRNAs). Aub and Ago3 are found in the germ cell cytoplasm, where they function in the ping-pong cycle to consume transposon mRNAs. The nuclear Piwi protein is required for transposon silencing in both germ and somatic follicle cells, yet the precise mechanisms by which Piwi acts remain largely unclear. We investigated the role of Piwi by combining cell type-specific knockdowns with measurements of steady-state transposon mRNA levels, nascent RNA synthesis, chromatin state, and small RNA abundance. In somatic cells, Piwi loss led to concerted effects on nascent transcripts and transposon mRNAs, indicating that Piwi acts through transcriptional gene silencing (TGS). In germ cells, Piwi loss showed disproportionate impacts on steady-state RNA levels, indicating that it also exerts an effect on post-transcriptional gene silencing (PTGS). Piwi knockdown affected levels of germ cell piRNAs presumably bound to Aub and Ago3, perhaps explaining its post-transcriptional impacts. Overall, our results indicate that Piwi plays multiple roles in the piRNA pathway, in part enforcing transposon repression through effects on local chromatin states and transcription but also participating in germ cell piRNA biogenesis.

[1]  E. Zelentsova,et al.  Evolution and dynamics of small RNA response to a retroelement invasion in Drosophila. , 2013, Molecular biology and evolution.

[2]  E. Schulz,et al.  Crystal structure of the primary piRNA biogenesis factor Zucchini reveals similarity to the bacterial PLD endonuclease Nuc. , 2012, RNA.

[3]  Julius Brennecke,et al.  Transcriptional Silencing of Transposons by Piwi and Maelstrom and Its Impact on Chromatin State and Gene Expression , 2012, Cell.

[4]  M. Siomi,et al.  Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. , 2012, Genes & development.

[5]  Leighton J. Core,et al.  Defining the status of RNA polymerase at promoters. , 2012, Cell reports.

[6]  Kuniaki Saito,et al.  Structure and function of Zucchini endoribonuclease in piRNA biogenesis , 2012, Nature.

[7]  C. Antoniewski,et al.  Paramutation in Drosophila linked to emergence of a piRNA-producing locus , 2012, Nature.

[8]  G. Hannon,et al.  The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis , 2012, Nature.

[9]  G. Hannon,et al.  shutdown is a component of the Drosophila piRNA biogenesis machinery. , 2012, RNA.

[10]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[11]  Zhiping Weng,et al.  Adaptation to P Element Transposon Invasion in Drosophila melanogaster , 2011, Cell.

[12]  S. Elgin,et al.  Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line , 2011, Proceedings of the National Academy of Sciences.

[13]  Timothy J. Durham,et al.  Combinatorial Patterning of Chromatin Regulators Uncovered by Genome-wide Location Analysis in Human Cells , 2011, Cell.

[14]  V. Gvozdev,et al.  Separation of stem cell maintenance and transposon silencing functions of Piwi protein , 2011, Proceedings of the National Academy of Sciences.

[15]  S. Kawaoka,et al.  3' end formation of PIWI-interacting RNAs in vitro. , 2011, Molecular cell.

[16]  R. Lehmann,et al.  piRNA Production Requires Heterochromatin Formation in Drosophila , 2011, Current Biology.

[17]  J. V. Moran,et al.  Dynamic interactions between transposable elements and their hosts , 2011, Nature Reviews Genetics.

[18]  M. Savitsky,et al.  Mechanism of the piRNA-mediated silencing of Drosophila telomeric retrotransposons , 2011, Nucleic Acids Research.

[19]  V. Gvozdev,et al.  [The interplay of transposon silencing genes in the Drosophila melanogaster germline]. , 2011, Molekuliarnaia biologiia.

[20]  Dennis C. Friedrich,et al.  A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries , 2011, Genome Biology.

[21]  Haifan Lin,et al.  Drosophila Piwi Functions in Hsp90-Mediated Suppression of Phenotypic Variation , 2010, Nature Genetics.

[22]  Caifu Chen,et al.  Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila. , 2010, Genes & development.

[23]  Kuniaki Saito,et al.  Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. , 2010, Genes & development.

[24]  M. Schaefer,et al.  Lack of evidence for DNA methylation of Invader4 retroelements in Drosophila and implications for Dnmt2-mediated epigenetic regulation , 2010, Nature Genetics.

[25]  R. Sachidanandam,et al.  An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila , 2010, The EMBO journal.

[26]  D. Zilberman,et al.  Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation , 2010, Science.

[27]  E. P. Lei,et al.  HP1 Recruitment in the Absence of Argonaute Proteins in Drosophila , 2010, PLoS genetics.

[28]  K. Asai,et al.  A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila , 2009, Nature.

[29]  Z. Weng,et al.  The Drosophila HP1 Homolog Rhino Is Required for Transposon Silencing and piRNA Production by Dual-Strand Clusters , 2009, Cell.

[30]  Chen Zeng,et al.  A clustering approach for identification of enriched domains from histone modification ChIP-Seq data , 2009, Bioinform..

[31]  Julius Brennecke,et al.  Specialized piRNA Pathways Act in Germline and Somatic Tissues of the Drosophila Ovary , 2009, Cell.

[32]  Z. Weng,et al.  Collapse of Germline piRNAs in the Absence of Argonaute3 Reveals Somatic piRNAs in Flies , 2009, Cell.

[33]  Gregory J. Hannon,et al.  Small RNAs as Guardians of the Genome , 2009, Cell.

[34]  P. Zamore,et al.  Small silencing RNAs: an expanding universe , 2009, Nature Reviews Genetics.

[35]  R. Sachidanandam,et al.  An Epigenetic Role for Maternally Inherited piRNAs in Transposon Silencing , 2008, Science.

[36]  Ravi Sachidanandam,et al.  A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. , 2008, Molecular cell.

[37]  J. M. Mason,et al.  HP1 Is Distributed Within Distinct Chromatin Domains at Drosophila Telomeres , 2008, Genetics.

[38]  Kenichiro Hata,et al.  DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. , 2008, Genes & development.

[39]  Haifan Lin,et al.  An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster , 2007, Nature.

[40]  G. Hannon,et al.  The Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race , 2007, Science.

[41]  Seth D Findley,et al.  Drosophila PIWI associates with chromatin and interacts directly with HP1a. , 2007, Genes & development.

[42]  T. Tuschl,et al.  Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline , 2007, Nucleic acids research.

[43]  D. Anxolabéhère,et al.  Telomeric Trans-Silencing: An Epigenetic Repression Combining RNA Silencing and Heterochromatin Formation , 2007, PLoS genetics.

[44]  A. Pélisson,et al.  The flamenco Locus Controls the gypsy and ZAM Retroviruses and Is Required for Drosophila Oogenesis , 2007, Genetics.

[45]  R. Martienssen,et al.  Transposable elements and the epigenetic regulation of the genome , 2007, Nature Reviews Genetics.

[46]  Manolis Kellis,et al.  Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila , 2007, Cell.

[47]  Kuniaki Saito,et al.  A Slicer-Mediated Mechanism for Repeat-Associated siRNA 5' End Formation in Drosophila , 2007, Science.

[48]  Alain Bucheton,et al.  A Novel Repeat-Associated Small Interfering RNA-Mediated Silencing Pathway Downregulates Complementary Sense gypsy Transcripts in Somatic Cells of the Drosophila Ovary , 2006, Journal of Virology.

[49]  Kuniaki Saito,et al.  Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. , 2006, Genes & development.

[50]  P. Georgiev,et al.  Telomere elongation is under the control of the RNAi-based mechanism in the Drosophila germline. , 2006, Genes & development.

[51]  V. Gvozdev,et al.  Argonaute protein PIWI controls mobilization of retrotransposons in the Drosophila male germline , 2005, Nucleic acids research.

[52]  L. Fanti,et al.  HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila. , 2004, Molecular cell.

[53]  B. Dastugue,et al.  COM, a heterochromatic locus governing the control of independent endogenous retroviruses from Drosophila melanogaster. , 2003, Genetics.

[54]  P. Georgiev,et al.  Heterochromatin Protein 1 Is Involved in Control of Telomere Elongation in Drosophila melanogaster , 2002, Molecular and Cellular Biology.

[55]  Haifan Lin,et al.  piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. , 2000, Development.

[56]  Haifan Lin,et al.  A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. , 1998, Genes & development.

[57]  D. Anxolabéhère,et al.  Repression of hybrid dysgenesis in Drosophila melanogaster by combinations of telomeric P-element reporters and naturally occurring P elements. , 1998, Genetics.

[58]  A. Bucheton,et al.  Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. , 1995, Genetics.

[59]  V. Corces,et al.  Gypsy transposition correlates with the production of a retroviral envelope‐like protein under the tissue‐specific control of the Drosophila flamenco gene. , 1994, The EMBO journal.

[60]  A. Pélisson,et al.  Hybrid dysgenesis in Drosophila melanogaster. , 1980, Science.

[61]  M. G. Kidwell,et al.  Hybrid Dysgenesis in DROSOPHILA MELANOGASTER: A Syndrome of Aberrant Traits Including Mutation, Sterility and Male Recombination. , 1977, Genetics.

[62]  L. Teysset,et al.  About the origin of retroviruses and the co-evolution of the gypsy retrovirus with the Drosophila flamenco host gene , 2004, Genetica.