On optimality of the barrier strategy in de Finetti’s dividend problem for spectrally negative Lévy processes

We consider the classical optimal dividend control problem which was proposed by de Finetti [Trans. XVth Internat. Congress Actuaries 2 (1957) 433-443]. Recently Avram, Palmowski and Pistorius [Ann. Appl. Probab. 17 (2007) 156-180] studied the case when the risk process is modeled by a general spectrally negative Levy process. We draw upon their results and give sufficient conditions under which the optimal strategy is of barrier type, thereby helping to explain the fact that this particular strategy is not optimal in general. As a consequence, we are able to extend considerably the class of processes for which the barrier strategy proves to be optimal.

[1]  Hans U. Gerber,et al.  The probability of ruin for the Inverse Gaussian and related processes , 1993 .

[2]  Mladen Savov,et al.  Smoothness of scale functions for spectrally negative Lévy processes , 2009, 0903.1467.

[3]  S. Taylor,et al.  LÉVY PROCESSES (Cambridge Tracts in Mathematics 121) , 1998 .

[4]  R. Song,et al.  Potential Theory of Special Subordinators and Subordinate Killed Stable Processes , 2006 .

[5]  N. Jacob,et al.  Pseudo Differential Operators and Markov Processes: Volume I: Fourier Analysis and Semigroups , 2001 .

[6]  Xiaowen Zhou,et al.  On a Classical Risk Model with a Constant Dividend Barrier , 2005 .

[7]  H. Schmidli,et al.  Optimisation in Non-Life Insurance , 2006 .

[8]  R. Wolpert Lévy Processes , 2000 .

[9]  Søren Asmussen,et al.  Controlled diffusion models for optimal dividend pay-out , 1997 .

[10]  Larry A. Shepp,et al.  Risk vs. profit potential: A model for corporate strategy , 1996 .

[11]  Olivier Deprez “Optimal Dividends: Analysis with Brownian Motion,” Ana C. Cebrián, Hans U. Gerber and Elias S.W. Shiu, January 2004 , 2004 .

[12]  P. Azcue,et al.  OPTIMAL REINSURANCE AND DIVIDEND DISTRIBUTION POLICIES IN THE CRAMÉR‐LUNDBERG MODEL , 2005 .

[13]  A. Kyprianou Introductory Lectures on Fluctuations of Lévy Processes with Applications , 2006 .

[14]  Gordon E. Willmot,et al.  The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function , 2003 .

[15]  Miljenko Huzak,et al.  Ruin probabilities and decompositions for general perturbed risk processes , 2004, math/0407125.

[16]  R. Song,et al.  Green Function Estimates and Harnack Inequality for Subordinate Brownian Motions , 2006 .

[17]  H. Gerber,et al.  A Note on the Dividends-Penalty Identity and the Optimal Dividend Barrier , 2006, ASTIN Bulletin.

[18]  Hans-Ulrich Gerber,et al.  Entscheidungskriterien für den zusammengesetzten Poisson-Prozess , 1969 .

[19]  Shuanming Li,et al.  The distribution of the dividend payments in the compound poisson risk model perturbed by diffusion , 2006 .

[20]  Howard R. Waters,et al.  Some Optimal Dividends Problems , 2004, ASTIN Bulletin.

[21]  Zong Zhao-jun,et al.  ASYMPTOTIC THEORY FOR A RISK PROCESS WITH A HIGH DIVIDEND BARRIER , 2007 .

[22]  Hans U. Gerber,et al.  On Optimal Dividend Strategies In The Compound Poisson Model , 2006 .

[23]  Michael I. Taksar,et al.  Optimal risk and dividend distribution control models for an insurance company , 2000, Math. Methods Oper. Res..

[24]  Xiaowen Zhou,et al.  Distribution of the Present Value of Dividend Payments in a Lévy Risk Model , 2007, Journal of Applied Probability.

[25]  Hansjörg Furrer,et al.  Risk processes perturbed by α-stable Lévy motion , 1998 .

[26]  Søren Asmussen,et al.  Ruin probabilities , 2001, Advanced series on statistical science and applied probability.

[27]  F. Dufresne,et al.  Risk Theory with the Gamma Process , 1991, ASTIN Bulletin.

[28]  W. Li,et al.  The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier , 2007 .

[29]  Z. Palmowski,et al.  Distributional Study of De Finetti's Dividend Problem for a General Lévy Insurance Risk Process , 2007, Journal of Applied Probability.

[30]  Esther Frostig,et al.  The expected time to ruin in a risk process with constant barrier via martingales , 2005 .

[31]  Florin Avram,et al.  On the optimal dividend problem for a spectrally negative Lévy process , 2007, math/0702893.

[32]  Niels Jacob,et al.  Pseudo-Differential Operators and Markov Processes , 1996 .

[33]  A. Shiryaev,et al.  Optimization of the flow of dividends , 1995 .