Matter power spectrum and the challenge of percent accuracy

Future galaxy surveys require one percent precision in the theoretical knowledge of the power spectrum over a large range including very nonlinear scales. While this level of accuracy is easily obtained in the linear regime with perturbation theory, it represents a serious challenge for small scales where numerical simulations are required. In this paper we quantify the precision of present-day N-body methods, identifying main potential error sources from the set-up of initial conditions to the measurement of the final power spectrum. We directly compare three widely used N-body codes, Ramses, Pkdgrav3, and Gadget3 which represent three main discretisation techniques: the particle-mesh method, the tree method, and a hybrid combination of the two. For standard run parameters, the codes agree to within one percent at k⩽1 h Mpc−1 and to within three percent at k⩽10 h Mpc−1. We also consider the bispectrum and show that the reduced bispectra agree at the sub-percent level for k⩽ 2 h Mpc−1. In a second step, we quantify potential errors due to initial conditions, box size, and resolution using an extended suite of simulations performed with our fastest code Pkdgrav3. We demonstrate that the simulation box size should not be smaller than L=0.5 h−1Gpc to avoid systematic finite-volume effects (while much larger boxes are required to beat down the statistical sample variance). Furthermore, a maximum particle mass of Mp=109 h−1M⊙ is required to conservatively obtain one percent precision of the matter power spectrum. As a consequence, numerical simulations covering large survey volumes of upcoming missions such as DES, LSST, and Euclid will need more than a trillion particles to reproduce clustering properties at the targeted accuracy.

[1]  M. Crocce,et al.  Accurate estimators of correlation functions in Fourier space , 2015, 1512.07295.

[2]  R. Teyssier,et al.  A new method to quantify the effects of baryons on the matter power spectrum , 2015, 1510.06034.

[3]  Leiden University,et al.  The contributions of matter inside and outside of haloes to the matter power spectrum , 2015, 1501.05950.

[4]  F. J. Castander,et al.  The MICE Grand Challenge Lightcone Simulation I: Dark matter clustering , 2013, 1312.1707.

[5]  R. B. Barreiro,et al.  Planck 2013 results , 2014 .

[6]  Romain Teyssier,et al.  Baryonic effects on weak-lensing two-point statistics and its cosmological implications , 2014, 1410.6826.

[7]  Matthew J. Turk,et al.  Dark Sky Simulations: Early Data Release , 2014, 1407.2600.

[8]  U. Seljak,et al.  Analytic model for the matter power spectrum, its covariance matrix and baryonic effects , 2014, 1407.0060.

[9]  Changbom Park,et al.  Effects of the initial conditions on cosmological N-body simulations , 2014, 1401.6180.

[10]  Y. Rasera,et al.  Cosmic-variance limited Baryon Acoustic Oscillations from the DEUS-FUR ΛCDM simulation , 2013, 1311.5662.

[11]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[12]  M. Crocce,et al.  Precision cosmology in muddy waters: Cosmological constraints and N-body codes , 2012, 1211.6434.

[13]  Earl Lawrence,et al.  THE COYOTE UNIVERSE EXTENDED: PRECISION EMULATION OF THE MATTER POWER SPECTRUM , 2013, 1304.7849.

[14]  Zurich,et al.  How closely do baryons follow dark matter on large scales , 2013, 1301.7426.

[15]  Joachim Stadel,et al.  Towards an accurate mass function for precision cosmology , 2012, 1206.5302.

[16]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[17]  F. Bernardeau,et al.  Constructing regularized cosmic propagators , 2011, 1112.3895.

[18]  M. Manera,et al.  Large-scale bias and efficient generation of initial conditions for nonlocal primordial non-Gaussianity , 2011, 1108.5512.

[19]  R. Smith,et al.  Non-linear evolution of cosmological structures in warm dark matter models , 2011, 1112.0330.

[20]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[21]  A. Kravtsov,et al.  IMPLEMENTING THE DC MODE IN COSMOLOGICAL SIMULATIONS WITH SUPERCOMOVING VARIABLES , 2011, 1104.1428.

[22]  Joop Schaye,et al.  The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology , 2011, 1104.1174.

[23]  Oliver Hahn,et al.  Multi-scale initial conditions for cosmological simulations , 2011, 1103.6031.

[24]  R. Teyssier,et al.  The formation of disc galaxies in a ΛCDM universe , 2010, 1004.0005.

[25]  A. Jenkins,et al.  Second-order Lagrangian perturbation theory initial conditions for resimulations , 2009, 0910.0258.

[26]  Martin White,et al.  Critical look at cosmological perturbation theory techniques , 2009, 0905.0479.

[27]  A. Knebe,et al.  ON THE STARTING REDSHIFT COSMOLOGICAL SIMULATIONS: FOCUSING ON HALO PROPERTIES , 2009, 0904.0083.

[28]  J. McBride,et al.  Mass accretion rates and histories of dark matter haloes , 2009, 0902.3659.

[29]  S. Colombi,et al.  Accurate estimators of power spectra in N‐body simulations , 2008, 0811.0313.

[30]  Joachim Stadel,et al.  Quantifying the heart of darkness with GHALO – a multibillion particle simulation of a galactic halo , 2008, 0808.2981.

[31]  Simon Prunet,et al.  Full-sky weak-lensing simulation with 70 billion particles , 2008, 0807.3651.

[32]  B. Marcos,et al.  Towards quantitative control on discreteness error in the non-linear regime of cosmological N-body simulations , 2008, 0805.1357.

[33]  D. Higdon,et al.  THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2008, 0812.1052.

[34]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[35]  V. Springel,et al.  An Ideal Mass Assignment Scheme for Measuring the Power Spectrum with Fast Fourier Transforms , 2008, 0804.0070.

[36]  R. Teyssier,et al.  Bimodal gas accretion in the MareNostrum galaxy formation simulation , 2008 .

[37]  P. Ocvirk,et al.  Bimodal gas accretion in the Horizon–MareNostrum galaxy formation simulation , 2008, 0803.4506.

[38]  Michael S. Warren,et al.  The cosmic code comparison project , 2007, 0706.1270.

[39]  C. Frenk,et al.  The Aquarius Project : the subhalos of galactic halos , 2008 .

[40]  Michael Kuhlen,et al.  Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo , 2006, astro-ph/0611370.

[41]  M. Crocce,et al.  Transients from initial conditions in cosmological simulations , 2006, astro-ph/0606505.

[42]  M. Crocce,et al.  Memory of initial conditions in gravitational clustering , 2005, astro-ph/0509419.

[43]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[44]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[45]  Michael S. Warren,et al.  Robustness of Cosmological Simulations. I. Large-Scale Structure , 2004, astro-ph/0411795.

[46]  Lars Hernquist,et al.  Comparing AMR and SPH Cosmological Simulations. I. Dark Matter and Adiabatic Simulations , 2003, astro-ph/0312651.

[47]  Y. Jing,et al.  Correcting for the Alias Effect When Measuring the Power Spectrum Using a Fast Fourier Transform , 2004, astro-ph/0409240.

[48]  Uros Seljak Michael S. Warren Large‐scale bias and stochasticity of haloes and dark matter , 2004, astro-ph/0403698.

[49]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[50]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[51]  R. Teyssier c ○ ESO 2002 Astronomy Astrophysics , 2002 .

[52]  J. Stadel Cosmological N-body simulations and their analysis , 2001 .

[53]  L. Chiang,et al.  Phase Information and the Evolution of Cosmological Density Perturbations , 1999, astro-ph/9905250.

[54]  Max Tegmark,et al.  Observational Evidence for Stochastic Biasing , 1998, The Astrophysical Journal.

[55]  R. Scoccimarro Transients from initial conditions: a perturbative analysis , 1997, astro-ph/9711187.

[56]  U. Pen Reconstructing Nonlinear Stochastic Bias from Velocity Space Distortions , 1997, astro-ph/9711180.

[57]  G. Efstathiou,et al.  Numerical techniques for large cosmological N-body simulations , 1985 .