Approach to the dynamically reconfigurable robotic system

In this paper, a newly proposed robotic system called the dynamically reconfigurable robotic system (DRRS), is reconfigurable for given tasks, so that the level of flexibility and adaptability is much higher for a change of working environments than conventional robots which have un-metamorphic shapes and structures. This robotic system consists of many cells which have fundamental mechanical functions. Each cell is able to detach and combine autonomously, so that the system can self-reorganize depending on a task or on working environments, and can also be self-repairing. DRRS has many applications in many fields, e.g. maintenance robots, more advanced working robots, free-flying service robots in space, more evolved flexible automation, etc. This paper shows the concept of this system, the mechanism of cells, the basic experimental results of the rough approach control between cells, and the decision method of such cell-structured manipulator configurations. This method is based on the reachability of the manipulators for working points, and so is able to apply the design of ordinary manipulators.