The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity

In the mammalian central nervous system, excitatory glutamatergic synapses harness neurotransmission that is mediated by ion flow through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). AMPARs, which are enriched in the postsynaptic membrane on dendritic spines, are highly dynamic, and shuttle in and out of synapses in an activity-dependent manner. Changes in their number, subunit composition, phosphorylation state, and accessory proteins can all regulate AMPARs and thus modify synaptic strength and support cellular forms of learning. Furthermore, dysregulation of AMPAR plasticity has been implicated in various pathological states and has important consequences for mental health. Here we focus on the mechanisms that control AMPAR plasticity, drawing particularly from the extensive studies on hippocampal synapses, and highlight recent advances in the field along with considerations for future directions.

[1]  D. Choquet,et al.  Regulation of AMPA receptor lateral movements , 2002, Nature.

[2]  Richard L. Huganir,et al.  Identification and characterization of a novel phosphorylation site on the GluR1 subunit of AMPA receptors , 2007, Molecular and Cellular Neuroscience.

[3]  Robert C. Malenka,et al.  Glutamate receptor subunit GluA1 is necessary for long-term potentiation and synapse unsilencing, but not long-term depression in mouse hippocampus , 2011, Brain Research.

[4]  N. Emptage,et al.  Two sides to long-term potentiation: a view towards reconciliation , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  G. Collingridge,et al.  Removal of AMPA Receptors (AMPARs) from Synapses Is Preceded by Transient Endocytosis of Extrasynaptic AMPARs , 2004, The Journal of Neuroscience.

[6]  Mark von Zastrow,et al.  Role of ampa receptor endocytosis in synaptic plasticity , 2001, Nature Reviews Neuroscience.

[7]  R. Malenka,et al.  A critical role for PSD-95/AKAP interactions in endocytosis of synaptic AMPA receptors , 2009, Nature Neuroscience.

[8]  J. Octave,et al.  Network Excitability Dysfunction in Alzheimer's Disease: Insights from In Vitro and In Vivo Models , 2010, Reviews in the neurosciences.

[9]  Mark von Zastrow,et al.  Role of AMPA Receptor Cycling in Synaptic Transmission and Plasticity , 1999, Neuron.

[10]  J. Sanes,et al.  Development of the vertebrate neuromuscular junction. , 1999, Annual review of neuroscience.

[11]  G. Collingridge,et al.  NSF Binding to GluR2 Regulates Synaptic Transmission , 1998, Neuron.

[12]  Chris I. De Zeeuw,et al.  Expression of a Protein Kinase C Inhibitor in Purkinje Cells Blocks Cerebellar LTD and Adaptation of the Vestibulo-Ocular Reflex , 1998, Neuron.

[13]  T. Liljefors,et al.  Identification of Amino Acid Residues in GluR1 Responsible for Ligand Binding and Desensitization , 2001, The Journal of Neuroscience.

[14]  松崎 政紀 Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001 .

[15]  B. Vissel,et al.  Long-term potentiation in the hippocampal CA1 region does not require insertion and activation of GluR2-lacking AMPA receptors. , 2007, Journal of neurophysiology.

[16]  G. Collingridge,et al.  Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation , 2006, Nature Neuroscience.

[17]  R. Huganir,et al.  Requirement of AMPA Receptor GluR2 Phosphorylation for Cerebellar Long-Term Depression , 2003, Science.

[18]  T. Hirano,et al.  Visualization of subunit-specific delivery of glutamate receptors to postsynaptic membrane during hippocampal long-term potentiation. , 2012, Cell reports.

[19]  Yu Song,et al.  Nanoscale Scaffolding Domains within the Postsynaptic Density Concentrate Synaptic AMPA Receptors , 2013, Neuron.

[20]  R. Malinow,et al.  Ras and Rap Control AMPA Receptor Trafficking during Synaptic Plasticity , 2002, Cell.

[21]  T. Bliss Long-lasting potentiation of synaptic transmission , 2005 .

[22]  R. Huganir,et al.  PICK1 and Phosphorylation of the Glutamate Receptor 2 (GluR2) AMPA Receptor Subunit Regulates GluR2 Recycling after NMDA Receptor-Induced Internalization , 2007, The Journal of Neuroscience.

[23]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[24]  G. Turrigiano,et al.  Synaptic Scaling Requires the GluR2 Subunit of the AMPA Receptor , 2009, The Journal of Neuroscience.

[25]  R. Dingledine,et al.  Glutamate Receptor Ion Channels: Structure, Regulation, and Function , 2010, Pharmacological Reviews.

[26]  Andrei Rozov,et al.  Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression , 1999, Nature.

[27]  J. Roder,et al.  Enhanced LTP in Mice Deficient in the AMPA Receptor GluR2 , 1996, Neuron.

[28]  C. Hoogenraad,et al.  Shape-induced asymmetric diffusion in dendritic spines allows efficient synaptic AMPA receptor trapping. , 2013, Biophysical journal.

[29]  Y. Goda,et al.  Differential control of presynaptic efficacy by postsynaptic N-cadherin and β-catenin , 2011, Nature Neuroscience.

[30]  Y. Goda,et al.  Activity-Dependent Regulation of Synaptic AMPA Receptor Composition and Abundance by β3 Integrins , 2008, Neuron.

[31]  Lu Chen,et al.  Chronic Inactivation of a Neural Circuit Enhances LTP by Inducing Silent Synapse Formation , 2013, The Journal of Neuroscience.

[32]  V. Piëch,et al.  Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons , 2001, Nature Neuroscience.

[33]  N. Hirokawa,et al.  Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites , 2002, Nature.

[34]  P. Whiting,et al.  Identification of amino acid residues responsible for the α5  subunit binding selectivity of L‐655,708, a benzodiazepine binding site ligand at the GABAA receptor , 2001 .

[35]  S. Heinemann,et al.  Cloned glutamate receptors. , 1994, Annual review of neuroscience.

[36]  P. Scheurich,et al.  Tumor necrosis factor signaling , 2003, Cell Death and Differentiation.

[37]  Jakub Wlodarczyk,et al.  Synaptically Released Matrix Metalloproteinase Activity in Control of Structural Plasticity and the Cell Surface Distribution of GluA1-AMPA Receptors , 2014, PloS one.

[38]  M. Scott Bowers,et al.  Cocaine but Not Natural Reward Self-Administration nor Passive Cocaine Infusion Produces Persistent LTP in the VTA , 2008, Neuron.

[39]  Michael D. Ehlers,et al.  Myosin Vb Mobilizes Recycling Endosomes and AMPA Receptors for Postsynaptic Plasticity , 2008, Cell.

[40]  G. Collingridge,et al.  The Small GTPase Arf1 Modulates Arp2/3-Mediated Actin Polymerization via PICK1 to Regulate Synaptic Plasticity , 2013, Neuron.

[41]  Gina G. Turrigiano,et al.  Tumor Necrosis Factor-α Signaling Maintains the Ability of Cortical Synapses to Express Synaptic Scaling , 2010, The Journal of Neuroscience.

[42]  L. HowlandLeland,et al.  A differential control , 1966 .

[43]  E. Schuman,et al.  Miniature Neurotransmission Stabilizes Synaptic Function via Tonic Suppression of Local Dendritic Protein Synthesis , 2006, Cell.

[44]  G. Turrigiano,et al.  PSD-95 and PSD-93 Play Critical But Distinct Roles in Synaptic Scaling Up and Down , 2011, The Journal of Neuroscience.

[45]  E. Schuman,et al.  Protein synthesis in the dendrite. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[46]  T. Soderling,et al.  Long-Term Potentiation-Dependent Spine Enlargement Requires Synaptic Ca2+-Permeable AMPA Receptors Recruited by CaM-Kinase I , 2010, The Journal of Neuroscience.

[47]  Daniel Choquet,et al.  The Interaction between Stargazin and PSD-95 Regulates AMPA Receptor Surface Trafficking , 2007, Neuron.

[48]  C. Lüscher,et al.  Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area , 2011, Nature Neuroscience.

[49]  T. Soderling,et al.  Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. , 1997, Science.

[50]  R. Huganir,et al.  Stabilization of Ca2+-permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation , 2009, Proceedings of the National Academy of Sciences.

[51]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.

[52]  R. Malenka,et al.  Mechanism and Time Course of Cocaine-Induced Long-Term Potentiation in the Ventral Tegmental Area , 2008, The Journal of Neuroscience.

[53]  R. Carroll,et al.  Activity Bidirectionally Regulates AMPA Receptor mRNA Abundance in Dendrites of Hippocampal Neurons , 2006, The Journal of Neuroscience.

[54]  D. Perrais,et al.  Recycling Endosomes Undergo Rapid Closure of a Fusion Pore on Exocytosis in Neuronal Dendrites , 2014, The Journal of Neuroscience.

[55]  R. Nicoll,et al.  Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Zhen Yan,et al.  β-Amyloid Impairs AMPA Receptor Trafficking and Function by Reducing Ca2+/Calmodulin-dependent Protein Kinase II Synaptic Distribution* , 2009, Journal of Biological Chemistry.

[57]  I. Greger,et al.  AMPA Receptor Tetramerization Is Mediated by Q/R Editing , 2003, Neuron.

[58]  G. Turrigiano,et al.  Rapid Synaptic Scaling Induced by Changes in Postsynaptic Firing , 2008, Neuron.

[59]  R. Yasuda,et al.  AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK–dependent manner during long-term potentiation , 2010, Proceedings of the National Academy of Sciences.

[60]  J. Rossier,et al.  Correlation between kinetics and RNA splicing of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in neocortical neurons. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[61]  R. Malenka,et al.  Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus , 1992, Neuron.

[62]  M. Sheng,et al.  Synaptic Accumulation of PSD-95 and Synaptic Function Regulated by Phosphorylation of Serine-295 of PSD-95 , 2007, Neuron.

[63]  H. Adesnik,et al.  Conservation of Glutamate Receptor 2-Containing AMPA Receptors during Long-Term Potentiation , 2007, The Journal of Neuroscience.

[64]  Richard L. Huganir,et al.  Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons , 1999, Nature Neuroscience.

[65]  M. Frerking,et al.  Delivery of AMPA receptors to perisynaptic sites precedes the full expression of long-term potentiation , 2008, Proceedings of the National Academy of Sciences.

[66]  J. Meador-Woodruff,et al.  Expression of transcripts encoding AMPA receptor subunits and associated postsynaptic proteins in the macaque brain , 2004, The Journal of comparative neurology.

[67]  Alfredo Fontanini,et al.  Network homeostasis: a matter of coordination , 2009, Current Opinion in Neurobiology.

[68]  H. C. Hartzell,et al.  Acetylcholine Receptors: Number and Distribution at Neuromuscular Junctions in Rat Diaphragm , 1972, Science.

[69]  M. Bear,et al.  Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Shaomin Li,et al.  Soluble Oligomers of Amyloid β Protein Facilitate Hippocampal Long-Term Depression by Disrupting Neuronal Glutamate Uptake , 2009, Neuron.

[71]  M. Ehlers,et al.  Diffusional Trapping of GluR1 AMPA Receptors by Input-Specific Synaptic Activity , 2007, Neuron.

[72]  Lu Chen,et al.  Synaptic Signaling by All-Trans Retinoic Acid in Homeostatic Synaptic Plasticity , 2008, Neuron.

[73]  R. Tsien,et al.  Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors , 2004, Nature Neuroscience.

[74]  Y. Goda,et al.  Homeostatic synaptic plasticity: from single synapses to neural circuits , 2012, Current Opinion in Neurobiology.

[75]  H. Monyer,et al.  Coexpressed Auxiliary Subunits Exhibit Distinct Modulatory Profiles on AMPA Receptor Function , 2014, Neuron.

[76]  R. Malenka,et al.  Involvement of a calcineurin/ inhibitor-1 phosphatase cascade in hippocampal long-term depression , 1994, Nature.

[77]  D. Choquet,et al.  [Surface mobility of postsynaptic AMPARs tunes synaptic transmission]. , 2008, Medecine sciences : M/S.

[78]  Yu Zhang,et al.  Synaptic Transmission and Plasticity in the Absence of AMPA Glutamate Receptor GluR2 and GluR3 , 2003, Neuron.

[79]  M. V. Rossum,et al.  Activity Coregulates Quantal AMPA and NMDA Currents at Neocortical Synapses , 2000, Neuron.

[80]  Y. Goda,et al.  β-Catenin regulates excitatory postsynaptic strength at hippocampal synapses , 2007, Proceedings of the National Academy of Sciences.

[81]  Brian J. Wiltgen,et al.  A Role for Calcium-Permeable AMPA Receptors in Synaptic Plasticity and Learning , 2010, PloS one.

[82]  Fang Zhang,et al.  Loss of AKAP150 perturbs distinct neuronal processes in mice , 2008, Proceedings of the National Academy of Sciences.

[83]  Zhengping Jia,et al.  Ca2+ Permeable AMPA Receptor Induced Long-Term Potentiation Requires PI3/MAP Kinases but Not Ca/CaM-Dependent Kinase II , 2009, PloS one.

[84]  Qiang Zhou,et al.  Perisynaptic GluR2-lacking AMPA receptors control the reversibility of synaptic and spines modifications , 2010, Proceedings of the National Academy of Sciences.

[85]  Daniel Choquet,et al.  Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors , 2004, Nature Neuroscience.

[86]  Gavin Rumbaugh,et al.  Phosphorylation of the AMPA Receptor GluR1 Subunit Is Required for Synaptic Plasticity and Retention of Spatial Memory , 2003, Cell.

[87]  D. Choquet,et al.  CaMKII Triggers the Diffusional Trapping of Surface AMPARs through Phosphorylation of Stargazin , 2010, Neuron.

[88]  K. Svoboda,et al.  Experience Strengthening Transmission by Driving AMPA Receptors into Synapses , 2003, Science.

[89]  G. Collingridge,et al.  PI3Kγ is required for NMDA receptor–dependent long-term depression and behavioral flexibility , 2011, Nature Neuroscience.

[90]  Abdellatif Nemri,et al.  Santiago Ramón y Cajal , 2010, Scholarpedia.

[91]  Daniel Choquet,et al.  Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity , 2009, Nature Neuroscience.

[92]  Roberto Malinow,et al.  AMPA Receptor Incorporation into Synapses during LTP: The Role of Lateral Movement and Exocytosis , 2009, Neuron.

[93]  K. Shen,et al.  Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. , 1999, Science.

[94]  S. Cull-Candy,et al.  Single-Channel Properties of Recombinant AMPA Receptors Depend on RNA Editing, Splice Variation, and Subunit Composition , 1997, The Journal of Neuroscience.

[95]  R. Malenka,et al.  Synaptic scaling mediated by glial TNF-alpha. , 2006, Nature.

[96]  D. Kullmann The Mother of All Battles 20 years on: is LTP expressed pre‐ or postsynaptically? , 2012, The Journal of physiology.

[97]  D. Selkoe,et al.  Aβ Oligomers – a decade of discovery , 2007, Journal of neurochemistry.

[98]  R. Weinberg,et al.  Association of the Kinesin Motor KIF1A with the Multimodular Protein Liprin-α* , 2003, The Journal of Biological Chemistry.

[99]  A. Craig,et al.  Synapse-Specific Regulation of AMPA Receptor Subunit Composition by Activity , 2005, The Journal of Neuroscience.

[100]  T. Soderling,et al.  Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[101]  M. Ehlers,et al.  Syntaxin-4 Defines a Domain for Activity-Dependent Exocytosis in Dendritic Spines , 2010, Cell.

[102]  Roberto Malinow,et al.  Glutamate Receptor Exocytosis and Spine Enlargement during Chemically Induced Long-Term Potentiation , 2006, The Journal of Neuroscience.

[103]  E. Benarroch,et al.  AMPA receptors , 2016, Neurology.

[104]  M. Giustetto,et al.  Learning, AMPA receptor mobility and synaptic plasticity depend on n‐cofilin‐mediated actin dynamics , 2010, The EMBO journal.

[105]  Stephen M. Fitzjohn,et al.  Metabotropic Glutamate Receptor-Mediated Long-Term Depression: Molecular Mechanisms , 2009, Pharmacological Reviews.

[106]  R. Huganir,et al.  Phosphorylation of the α-Amino-3-hydroxy-5-methylisoxazole4-propionic Acid Receptor GluR1 Subunit by Calcium/ Calmodulin-dependent Kinase II* , 1997, The Journal of Biological Chemistry.

[107]  T. Bliss,et al.  Arc/Arg3.1 Is Essential for the Consolidation of Synaptic Plasticity and Memories , 2006, Neuron.

[108]  R. Huganir,et al.  Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus. , 2010, Journal of neurophysiology.

[109]  Jun Xia,et al.  Targeted In Vivo Mutations of the AMPA Receptor Subunit GluR2 and Its Interacting Protein PICK1 Eliminate Cerebellar Long-Term Depression , 2006, Neuron.

[110]  B. Tang Neuronal protein trafficking associated with Alzheimer disease , 2009, Cell adhesion & migration.

[111]  R. Huganir,et al.  The Glutamate Receptor-Interacting Protein Family of GluR2-Binding Proteins Is Required for Long-Term Synaptic Depression Expression in Cerebellar Purkinje Cells , 2008, The Journal of Neuroscience.

[112]  T. Soderling,et al.  Recruitment of Calcium-Permeable AMPA Receptors during Synaptic Potentiation Is Regulated by CaM-Kinase I , 2008, The Journal of Neuroscience.

[113]  Jing Wu,et al.  Arc/Arg3.1 Mediates Homeostatic Synaptic Scaling of AMPA Receptors , 2006, Neuron.

[114]  S. Raghavachari,et al.  A Unified Model of the Presynaptic and Postsynaptic Changes During LTP at CA1 Synapses , 2006, Science's STKE.

[115]  R. Malenka,et al.  Drugs of Abuse and Stress Trigger a Common Synaptic Adaptation in Dopamine Neurons , 2003, Neuron.

[116]  Daniel Choquet,et al.  Endocytic Trafficking and Recycling Maintain a Pool of Mobile Surface AMPA Receptors Required for Synaptic Potentiation , 2009, Neuron.

[117]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[118]  R. Nicoll,et al.  Subunit Composition of Synaptic AMPA Receptors Revealed by a Single-Cell Genetic Approach , 2009, Neuron.

[119]  D. Linden,et al.  Expression of Cerebellar Long-Term Depression Requires Postsynaptic Clathrin-Mediated Endocytosis , 2000, Neuron.

[120]  R. Malenka,et al.  Synaptic scaling mediated by glial TNF-α , 2006, Nature.

[121]  G. Collingridge,et al.  Receptor trafficking and synaptic plasticity , 2004, Nature Reviews Neuroscience.

[122]  Yu Tian Wang,et al.  Clathrin Adaptor AP2 and NSF Interact with Overlapping Sites of GluR2 and Play Distinct Roles in AMPA Receptor Trafficking and Hippocampal LTD , 2002, Neuron.

[123]  G. Tononi,et al.  Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration , 2014, Neuron.

[124]  A. Bonci,et al.  AMPA Receptor Synaptic Plasticity Induced by Psychostimulants: The Past, Present, and Therapeutic Future , 2010, Neuron.

[125]  Gene W. Yeo,et al.  The EJC Factor eIF4AIII Modulates Synaptic Strength and Neuronal Protein Expression , 2007, Cell.

[126]  Seok-Jin R. Lee,et al.  Activation of CaMKII in single dendritic spines during long-term potentiation , 2009, Nature.

[127]  Daniel Choquet,et al.  Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dynamically Organized in Nanodomains Regulated by PSD95 , 2013, The Journal of Neuroscience.

[128]  Mark A. Ungless,et al.  Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons , 2001, Nature.

[129]  D. Small,et al.  Mechanisms of synaptic homeostasis in Alzheimer's disease. , 2004, Current Alzheimer research.

[130]  R. Wenthold,et al.  Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[131]  J. Isaac,et al.  Plk2 attachment to NSF induces homeostatic removal of GluA2 during chronic overexcitation , 2010, Nature Neuroscience.

[132]  V. Derkach,et al.  Dominant role of the GluR2 subunit in regulation of AMPA receptors by CaMKII , 2005, Nature Neuroscience.

[133]  D. Linden,et al.  Participation of postsynaptic PKC in cerebellar long-term depression in culture. , 1991, Science.

[134]  Min Zhuo,et al.  The JAK/STAT Pathway Is Involved in Synaptic Plasticity , 2012, Neuron.

[135]  R. Huganir,et al.  Activation of Silent Synapses by Rapid Activity-Dependent Synaptic Recruitment of AMPA Receptors , 2001, The Journal of Neuroscience.

[136]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[137]  M. Hollmann,et al.  Auxiliary Subunits: Shepherding AMPA Receptors to the Plasma Membrane , 2014, Membranes.

[138]  J. Henley,et al.  Characterization of the Intracellular Transport of GluR1 and GluR2 α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid Receptor Subunits in Hippocampal Neurons* , 2003, Journal of Biological Chemistry.

[139]  W. Levy,et al.  Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[140]  J. Esteban,et al.  NMDA Receptor-Dependent Activation of the Small GTPase Rab5 Drives the Removal of Synaptic AMPA Receptors during Hippocampal LTD , 2005, Neuron.

[141]  K. Thorn,et al.  Real-Time Imaging of Discrete Exocytic Events Mediating Surface Delivery of AMPA Receptors , 2007, The Journal of Neuroscience.

[142]  R. Nicoll,et al.  LTP requires a reserve pool of glutamate receptors independent of subunit type , 2012, Nature.

[143]  M. Sheng,et al.  Critical Role of CDK5 and Polo-like Kinase 2 in Homeostatic Synaptic Plasticity during Elevated Activity , 2008, Neuron.

[144]  Roberto Malinow,et al.  Subunit-Specific Rules Governing AMPA Receptor Trafficking to Synapses in Hippocampal Pyramidal Neurons , 2001, Cell.

[145]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[146]  V. Murthy,et al.  Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons , 2002, Nature.

[147]  Michael Häusser,et al.  A proportional but slower NMDA potentiation follows AMPA potentiation in LTP , 2004, Nature Neuroscience.

[148]  Hillel Adesnik,et al.  Photoinactivation of Native AMPA Receptors Reveals Their Real-Time Trafficking , 2005, Neuron.

[149]  C. Hoogenraad,et al.  Mixed Microtubules Steer Dynein-Driven Cargo Transport into Dendrites , 2010, Current Biology.

[150]  Mark von Zastrow,et al.  Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD , 2000, Nature Neuroscience.

[151]  Joseph E LeDoux,et al.  Postsynaptic Receptor Trafficking Underlying a Form of Associative Learning , 2005, Science.

[152]  Emma L. Jenkins,et al.  Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis , 2008, Nature Cell Biology.

[153]  D. Jane,et al.  Dynamin-dependent Membrane Drift Recruits AMPA Receptors to Dendritic Spines* , 2009, Journal of Biological Chemistry.

[154]  Wei Zhang,et al.  Long-Term Depression at the Mossy Fiber–Deep Cerebellar Nucleus Synapse , 2006, The Journal of Neuroscience.

[155]  Gina G. Turrigiano,et al.  Homeostatic Synaptic Plasticity , 2008 .

[156]  Sadegh Nabavi,et al.  Engineering a memory with LTD and LTP , 2014, Nature.

[157]  R. S. Jones The NMDA receptor Edited by J. C. Watkins and G. L. Collinridge. Oxford University Press, New York (1990) 242 pp. £45.00 , 1991, Neuroscience.

[158]  R. Nicoll,et al.  Postsynaptic membrane fusion and long-term potentiation. , 1998, Science.

[159]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[160]  S. Nelson,et al.  A Critical and Cell-Autonomous Role for MeCP2 in Synaptic Scaling Up , 2012, The Journal of Neuroscience.

[161]  Roberto Malinow,et al.  Synaptic Incorporation of AMPA Receptors during LTP Is Controlled by a PKC Phosphorylation Site on GluR1 , 2006, Neuron.

[162]  Mark F Bear,et al.  NMDA Induces Long-Term Synaptic Depression and Dephosphorylation of the GluR1 Subunit of AMPA Receptors in Hippocampus , 1998, Neuron.

[163]  S. Deadwyler,et al.  Changes in glutamate receptor subunit composition in hippocampus and cortex in patients with refractory epilepsy , 1997, Journal of the Neurological Sciences.

[164]  J. Shepherd Memory, plasticity and sleep - A role for calcium permeable AMPA receptors? , 2012, Front. Mol. Neurosci..

[165]  Daniel Choquet,et al.  The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation , 2008, Nature Neuroscience.

[166]  Christian Lüscher,et al.  Group 1 mGluR-Dependent Synaptic Long-Term Depression: Mechanisms and Implications for Circuitry and Disease , 2010, Neuron.

[167]  Y. Goda,et al.  Differential involvement of beta3 integrin in pre- and postsynaptic forms of adaptation to chronic activity deprivation. , 2008, Neuron glia biology.

[168]  M. Bear,et al.  Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity , 2000, Nature.

[169]  R. Nicoll,et al.  Dynamin-dependent endocytosis of ionotropic glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[170]  R. Nicoll,et al.  Postsynaptically Silent Synapses in Single Neuron Cultures , 1998, Neuron.

[171]  Mark Farrant,et al.  Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond , 2006, Current Opinion in Neurobiology.

[172]  R. Nicoll,et al.  LTD expression is independent of glutamate receptor subtype , 2014, Front. Synaptic Neurosci..

[173]  R. Huganir,et al.  Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[174]  G. Collingridge,et al.  PDZ Proteins Interacting with C-Terminal GluR2/3 Are Involved in a PKC-Dependent Regulation of AMPA Receptors at Hippocampal Synapses , 2000, Neuron.