The role of microglia heterogeneity in synaptic plasticity and brain disorders: Will sequencing shed light on the discovery of new therapeutic targets?

[1]  E. Lacivita,et al.  Microglia Depletion Attenuates the Pro-Resolving Activity of the Formyl Peptide Receptor 2 Agonist AMS21 Related to Inhibition of Inflammasome NLRP3 Signalling Pathway: A Study of Organotypic Hippocampal Cultures , 2023, Cells.

[2]  B. Elliott,et al.  Stimulation of the Pro-Resolving Receptor Fpr2 Reverses Inflammatory Microglial Activity by Suppressing NFκB Activity , 2023, International journal of molecular sciences.

[3]  Shanshan Zhong,et al.  Single-Cell Mapping of Brain Myeloid Cell Subsets Reveals Key Transcriptomic Changes Favoring Neuroplasticity after Ischemic Stroke. , 2023, Neuroscience bulletin.

[4]  Jiping Tang,et al.  Role of N-formyl peptide receptor 2 in germinal matrix hemorrhage: an intrinsic review of a hematoma resolving pathway , 2023, Neural regeneration research.

[5]  C. Niswender,et al.  Trofinetide: a pioneering treatment for Rett syndrome. , 2023, Trends in pharmacological sciences.

[6]  Yun-wu Zhang,et al.  TREM2 receptor protects against complement-mediated synaptic loss by binding to complement C1q during neurodegeneration. , 2023, Immunity.

[7]  C. Schooling,et al.  The influence of growth and sex hormones on risk of alzheimer’s disease: a mendelian randomization study , 2023, European Journal of Epidemiology.

[8]  J. Włodarczyk,et al.  Astrocytic CD44 Deficiency Reduces the Severity of Kainate-Induced Epilepsy , 2023, Cells.

[9]  S. Keam Trofinetide: First Approval , 2023, Drugs.

[10]  K. Blomgren,et al.  ARG1-expressing microglia show a distinct molecular signature and modulate postnatal development and function of the mouse brain , 2023, Nature Neuroscience.

[11]  J. Hur,et al.  Spatial Transcriptomics: Technical Aspects of Recent Developments and Their Applications in Neuroscience and Cancer Research , 2023, Advanced science.

[12]  P. Worley,et al.  The neuronal pentraxin Nptx2 regulates complement activity and restrains microglia-mediated synapse loss in neurodegeneration , 2023, Science Translational Medicine.

[13]  Baoyang Hu,et al.  Lipopolysaccharide Preconditioning Restricts Microglial Overactivation and Alleviates Inflammation-Induced Depressive-like Behavior in Mice , 2023, Brain sciences.

[14]  D. Holtzman,et al.  Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy , 2023, Nature.

[15]  M. McCarthy,et al.  Microglia phagocytosis mediates the volume and function of the rat sexually dimorphic nucleus of the preoptic area , 2023, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Steffen Jung,et al.  Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer’s disease , 2023, Nature Neuroscience.

[17]  Shilong Deng,et al.  Novel antidepressant-like properties of the fullerenol in an LPS-induced depressive mouse model. , 2023, International immunopharmacology.

[18]  I. Jericó,et al.  Profiling TREM2 expression in amyotrophic lateral sclerosis , 2023, Brain, Behavior, and Immunity.

[19]  Chenghang Zong,et al.  Droplet-based transcriptome profiling of individual synapses , 2023, Nature Biotechnology.

[20]  Xiangdong Chen,et al.  Prolonged anesthesia induces neuroinflammation and complement-mediated microglial synaptic elimination involved in neurocognitive dysfunction and anxiety-like behaviors , 2023, BMC Medicine.

[21]  F. Schmitz,et al.  Synapse Dysfunctions in Multiple Sclerosis , 2023, International journal of molecular sciences.

[22]  J. Paz,et al.  Microglial pattern recognition via IL-33 promotes synaptic refinement in developing corticothalamic circuits in mice , 2022, The Journal of experimental medicine.

[23]  E. Wohleb,et al.  Microglial P2Y12 mediates chronic stress-induced synapse loss in the prefrontal cortex and associated behavioral consequences , 2022, Neuropsychopharmacology.

[24]  B. de Strooper,et al.  Pyroptosis in Alzheimer’s disease: cell type-specific activation in microglia, astrocytes and neurons , 2022, Acta Neuropathologica.

[25]  Guy C. Brown,et al.  Alzheimer's disease‐associated R47H TREM2 increases, but wild‐type TREM2 decreases, microglial phagocytosis of synaptosomes and neuronal loss , 2022, Glia.

[26]  Fang Wang,et al.  Microglia-dependent excessive synaptic pruning leads to cortical underconnectivity and behavioral abnormality following chronic social defeat stress in mice , 2022, Brain, Behavior, and Immunity.

[27]  Lan Xiao,et al.  Interactions Between Astrocytes and Oligodendroglia in Myelin Development and Related Brain Diseases , 2022, Neuroscience Bulletin.

[28]  Tuan Leng Tay,et al.  Microglia states and nomenclature: A field at its crossroads , 2022, Neuron.

[29]  M. Simons,et al.  CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging , 2022, Nature Neuroscience.

[30]  Xi Yang,et al.  ATF3 in atherosclerosis: a controversial transcription factor , 2022, Journal of Molecular Medicine.

[31]  G. Fries,et al.  Molecular pathways of major depressive disorder converge on the synapse , 2022, Molecular Psychiatry.

[32]  Yili Yang,et al.  Complement C1s as a diagnostic marker and therapeutic target: Progress and propective , 2022, Frontiers in Immunology.

[33]  Evan Z. Macosko,et al.  The expanding vistas of spatial transcriptomics , 2022, Nature Biotechnology.

[34]  John H. Zhang,et al.  Annexin A1 upregulates hematoma resolution via the FPR2/p-ERK(1/2)/DUSP1/CD36 signaling pathway after germinal matrix hemorrhage , 2022, Experimental Neurology.

[35]  Cheng-Di Zuo,et al.  Kurarinone alleviates hemin‐induced neuroinflammation and microglia‐mediated neurotoxicity by shifting microglial M1/M2 polarization via regulating the IGF1/PI3K/Akt signaling , 2022, Kaohsiung Journal of Medical Sciences.

[36]  J. Lachuer,et al.  Comparative analysis of transcriptome remodeling in plaque-associated and plaque-distant microglia during amyloid-β pathology progression in mice , 2022, Journal of Neuroinflammation.

[37]  Stephen A. Goutman,et al.  Amyotrophic lateral sclerosis , 2022, The Lancet.

[38]  Hai Duc Nguyen,et al.  The protective effects of curcumin on depression: Genes, transcription factors, and microRNAs involved. , 2022, Journal of affective disorders.

[39]  Shristi Pandey,et al.  Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models , 2022, Nature Aging.

[40]  Yuan Zhang,et al.  Microglia-specific transcriptional repression of interferon-regulated genes after prolonged stress in mice , 2022, Neurobiology of Stress.

[41]  Stephen A. Goutman,et al.  Amyotrophic lateral sclerosis , 2022, Nature Reviews Disease Primers.

[42]  A. Jaeschke,et al.  Apolipoprotein E in Cardiometabolic and Neurological Health and Diseases , 2022, International journal of molecular sciences.

[43]  Z. Freyberg,et al.  Brain region- and sex-specific transcriptional profiles of microglia , 2022, Frontiers in Psychiatry.

[44]  Samouil L. Farhi,et al.  Pyramidal neuron subtype diversity governs microglia states in the neocortex , 2022, Nature.

[45]  I. Gaisler-Salomon,et al.  Beyond NMDA Receptors: Homeostasis at the Glutamate Tripartite Synapse and Its Contributions to Cognitive Dysfunction in Schizophrenia , 2022, International journal of molecular sciences.

[46]  Minmin Luo,et al.  Directed evolution of adeno-associated virus for efficient gene delivery to microglia , 2022, Nature Methods.

[47]  José E. Velázquez Vega,et al.  PRC2 disruption in cerebellar progenitors produces cerebellar hypoplasia and aberrant myoid differentiation without blocking medulloblastoma growth , 2022, bioRxiv.

[48]  T. Sejnowski,et al.  Dnmt3a knockout in excitatory neurons impairs postnatal synapse maturation and increases the repressive histone modification H3K27me3 , 2022, eLife.

[49]  Yun-wu Zhang,et al.  Microglial Tmem59 Deficiency Impairs Phagocytosis of Synapse and Leads to Autism-Like Behaviors in Mice , 2022, Journal of Neuroscience.

[50]  Yi Tang,et al.  The Specific Mechanism of TREM2 Regulation of Synaptic Clearance in Alzheimer’s Disease , 2022, Frontiers in Immunology.

[51]  C. Liston,et al.  Synaptic Mechanisms Regulating Mood State Transitions in Depression. , 2022, Annual review of neuroscience.

[52]  Chang-Mei Liu,et al.  Loss of microglial EED impairs synapse density, learning, and memory , 2022, Molecular Psychiatry.

[53]  Weihong Song,et al.  The synapse as a treatment avenue for Alzheimer’s Disease , 2022, Molecular Psychiatry.

[54]  C. Vargeese,et al.  Preclinical evaluation of WVE-004, aninvestigational stereopure oligonucleotide forthe treatment of C9orf72-associated ALS or FTD , 2022, Molecular therapy. Nucleic acids.

[55]  Jing Shi,et al.  Multiple Mild Stimulations Reduce Membrane Distribution of CX3CR1 Promoted by Annexin a1 in Microglia to Attenuate Excessive Dendritic Spine Pruning and Cognitive Deficits Caused by a Transient Ischemic Attack in Mice , 2022, Neuroscience Bulletin.

[56]  Ping Liu,et al.  Arginase: An emerging and promising therapeutic target for cancer treatment. , 2022, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[57]  M. Tremblay,et al.  Early stress-induced impaired microglial pruning of excitatory synapses on immature CRH-expressing neurons provokes aberrant adult stress responses , 2022, Cell reports.

[58]  Evan Z. Macosko,et al.  Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain , 2022, Nature Neuroscience.

[59]  K. Harkness,et al.  Major Depression and Its Recurrences: Life Course Matters. , 2022, Annual review of clinical psychology.

[60]  Lingyun Sun,et al.  Neuronal NR4A1 deficiency drives complement-coordinated synaptic stripping by microglia in a mouse model of lupus , 2022, Signal Transduction and Targeted Therapy.

[61]  R. Perlis,et al.  SARS-CoV-2 promotes microglial synapse elimination in human brain organoids , 2022, bioRxiv.

[62]  Jay W. Shin,et al.  Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality , 2022, bioRxiv.

[63]  Changlian Zhu,et al.  An overlooked subset of Cx3cr1wt/wt microglia in the Cx3cr1CreER-Eyfp/wt mouse has a repopulation advantage over Cx3cr1CreER-Eyfp/wt microglia following microglial depletion , 2022, Journal of neuroinflammation.

[64]  T. Kuner,et al.  Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. , 2022, Physiological reviews.

[65]  W. Luo,et al.  MIF promotes neurodegeneration and cell death via its nuclease activity following traumatic brain injury , 2021, Cellular and Molecular Life Sciences.

[66]  Guy C. Brown Neuronal Loss after Stroke Due to Microglial Phagocytosis of Stressed Neurons , 2021, International journal of molecular sciences.

[67]  M. Graeber,et al.  Cytokine Signalling at the Microglial Penta-Partite Synapse , 2021, International journal of molecular sciences.

[68]  G. Sia,et al.  C1q and SRPX2 regulate microglia mediated synapse elimination during early development in the visual thalamus but not the visual cortex , 2021, Glia.

[69]  Joshua M. Weiss,et al.  Spatially resolved transcriptomics reveals the architecture of the tumor-microenvironment interface , 2021, Nature Communications.

[70]  Xiao-Lan Wang,et al.  Microglia Regulate Neuronal Circuits in Homeostatic and High-Fat Diet-Induced Inflammatory Conditions , 2021, Frontiers in Cellular Neuroscience.

[71]  A. Molofsky,et al.  In situ and transcriptomic identification of microglia in synapse-rich regions of the developing zebrafish brain , 2021, Nature Communications.

[72]  Hongkui Zeng,et al.  Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH , 2021, Nature.

[73]  Shuguang Yu,et al.  Electroacupuncture Improves M2 Microglia Polarization and Glia Anti-inflammation of Hippocampus in Alzheimer’s Disease , 2021, Frontiers in Neuroscience.

[74]  Shalin B. Mehta,et al.  Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. , 2021, Cell stem cell.

[75]  Hui Shi,et al.  Oxymatrine inhibits neuroinflammation byRegulating M1/M2 polarization in N9 microglia through the TLR4/NF-κB pathway. , 2021, International immunopharmacology.

[76]  D. Reich,et al.  A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis , 2021, Nature.

[77]  A. J. Ramos,et al.  Long-Lasting Changes in Glial Cells Isolated From Rats Subjected to the Valproic Acid Model of Autism Spectrum Disorder , 2021, Frontiers in Pharmacology.

[78]  F. Faucz,et al.  PRKAR1A and Thyroid Tumors , 2021, Cancers.

[79]  J. Włodarczyk,et al.  Microglia Depletion-Induced Remodeling of Extracellular Matrix and Excitatory Synapses in the Hippocampus of Adult Mice , 2021, Cells.

[80]  N. Bornstein,et al.  CCR5-Δ32 polymorphism: a possible protective factor for post-stroke depressive symptoms , 2021, Journal of psychiatry & neuroscience : JPN.

[81]  S. R. Datta,et al.  GABA-receptive microglia selectively sculpt developing inhibitory circuits , 2021, Cell.

[82]  D. Cui,et al.  Evolving Models and Tools for Microglial Studies in the Central Nervous System , 2021, Neuroscience Bulletin.

[83]  D. Geschwind,et al.  C9orf72 deficiency promotes microglial-mediated synaptic loss in aging and amyloid accumulation , 2021, Neuron.

[84]  M. Latouche,et al.  C9ORF72: What It Is, What It Does, and Why It Matters , 2021, Frontiers in Cellular Neuroscience.

[85]  D. S. Lee,et al.  CellDART: cell type inference by domain adaptation of single-cell and spatial transcriptomic data , 2021, bioRxiv.

[86]  J. Biernaskie,et al.  A subpopulation of embryonic microglia respond to maternal stress and influence nearby neural progenitors. , 2021, Developmental cell.

[87]  Y. Fang,et al.  Major Depressive Disorder: Advances in Neuroscience Research and Translational Applications , 2021, Neuroscience Bulletin.

[88]  M. Simons,et al.  White matter aging drives microglial diversity , 2021, Neuron.

[89]  J. Korenberg,et al.  Core Transcriptional Networks in Williams Syndrome: IGF1-PI3K-AKT-mTOR, MAPK and Actin Signaling at the Synapse Echo Autism. , 2021, Human molecular genetics.

[90]  C. Funk,et al.  Arginase-1 deficiency in neural cells does not contribute to neurodevelopment or functional outcomes after sciatic nerve injury , 2021, Neurochemistry International.

[91]  C. Limatola,et al.  Microglia control glutamatergic synapses in the adult mouse hippocampus , 2021, bioRxiv.

[92]  V. Besson,et al.  Microglia and Neuroinflammation: What Place for P2RY12? , 2021, International journal of molecular sciences.

[93]  Li-Ru Zhao,et al.  Brain-derived CCR5 Contributes to Neuroprotection and Brain Repair after Experimental Stroke , 2021, Aging and disease.

[94]  M. van Lookeren Campagne,et al.  Prior activation state shapes the microglia response to antihuman TREM2 in a mouse model of Alzheimer’s disease , 2021, Proceedings of the National Academy of Sciences.

[95]  B. Hyman,et al.  APOE and Alzheimer’s Disease: Advances in Genetics, Pathophysiology, and Therapeutic Approaches. , 2021, The Lancet Neurology.

[96]  Christopher W. Whelan,et al.  Overexpression of schizophrenia susceptibility factor human complement C4A promotes excessive synaptic loss and behavioral changes in mice , 2020, Nature Neuroscience.

[97]  S. Sirivichayakul,et al.  Inflammatory and Oxidative Pathways Are New Drug Targets in Multiple Episode Schizophrenia and Leaky Gut, Klebsiella pneumoniae, and C1q Immune Complexes Are Additional Drug Targets in First Episode Schizophrenia , 2020, Molecular Neurobiology.

[98]  G. Enns,et al.  Clinical effect and safety profile of pegzilarginase in patients with arginase 1 deficiency , 2020, Journal of inherited metabolic disease.

[99]  Steffen Jung,et al.  A Binary Cre Transgenic Approach Dissects Microglia and CNS Border-Associated Macrophages. , 2020, Immunity.

[100]  Evan Z. Macosko,et al.  Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2 , 2020, Nature Biotechnology.

[101]  T. Horvath,et al.  Ucp2-dependent microglia-neuronal coupling controls ventral hippocampal circuit function and anxiety-like behavior , 2020, bioRxiv.

[102]  Á. Dénes,et al.  Shaping Neuronal Fate: Functional Heterogeneity of Direct Microglia-Neuron Interactions , 2020, Neuron.

[103]  B. Trapp,et al.  Microglial Displacement of GABAergic Synapses Is a Protective Event during Complex Febrile Seizures. , 2020, Cell reports.

[104]  J. Priller,et al.  Single-cell mass cytometry of microglia in major depressive disorder reveals a non-inflammatory phenotype with increased homeostatic marker expression , 2020, Translational Psychiatry.

[105]  Shengnan Liu,et al.  The role of CCR5 in the protective effect of Esculin on lipopolysaccharide-induced depressive symptom in mice. , 2020, Journal of affective disorders.

[106]  Carla Cangalaya,et al.  Light-induced engagement of microglia to focally remodel synapses in the adult brain , 2020, eLife.

[107]  Joakim Lundeberg,et al.  Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer’s Disease , 2020, Cell.

[108]  J. Clarimón,et al.  Motor cortex transcriptome reveals microglial key events in amyotrophic lateral sclerosis , 2020, Neurology: Neuroimmunology & Neuroinflammation.

[109]  D. Hume,et al.  A Transgenic Line That Reports CSF1R Protein Expression Provides a Definitive Marker for the Mouse Mononuclear Phagocyte System , 2020, The Journal of Immunology.

[110]  Melanie A. Huntley,et al.  Alzheimer’s Patient Microglia Exhibit Enhanced Aging and Unique Transcriptional Activation , 2020, Cell reports.

[111]  M. Kheirbek,et al.  Microglial Remodeling of the Extracellular Matrix Promotes Synapse Plasticity , 2020, Cell.

[112]  Gabriel L. McKinsey,et al.  A new genetic strategy for targeting microglia in development and disease , 2020, eLife.

[113]  B. Appel,et al.  Microglia phagocytose myelin sheaths to modify developmental myelination , 2020, Nature Neuroscience.

[114]  S. H. Chandler,et al.  Single-cell RNA-seq analysis of the brainstem of mutant SOD1 mice reveals perturbed cell types and pathways of amyotrophic lateral sclerosis , 2020, Neurobiology of Disease.

[115]  R. Jahn,et al.  Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia , 2020, bioRxiv.

[116]  Tom H. Cheung,et al.  IL-33-PU.1 Transcriptome Reprogramming Drives Functional State Transition and Clearance Activity of Microglia in Alzheimer's Disease. , 2020, Cell reports.

[117]  Gyu Hyun Kim,et al.  Elevated protein synthesis in microglia causes autism-like synaptic and behavioral aberrations , 2020, Nature Communications.

[118]  Deepali V. Sawant,et al.  Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer , 2020, Cell.

[119]  C. Weidong,et al.  Macrophage M1/M2 polarization. , 2020, European journal of pharmacology.

[120]  Daniel J. Gaffney,et al.  Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system , 2020, Acta Neuropathologica.

[121]  Jie Li,et al.  Microglia mediate forgetting via complement-dependent synaptic elimination , 2020, Science.

[122]  K. Malki,et al.  The role of TREM2 in Alzheimer's disease; evidence from transgenic mouse models , 2020, Neurobiology of Aging.

[123]  J. De las Rivas,et al.  Transcriptomic landscape, gene signatures and regulatory profile of aging in the human brain. , 2020, Biochimica et biophysica acta. Gene regulatory mechanisms.

[124]  S. Tenzer,et al.  Proteomic Analysis of Brain Region and Sex-Specific Synaptic Protein Expression in the Adult Mouse Brain , 2020, Cells.

[125]  J. A. Stratton,et al.  Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion , 2020, Science Advances.

[126]  I. Amit,et al.  Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program , 2019, Cell.

[127]  D. Reich,et al.  Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease , 2019, bioRxiv.

[128]  Yunyu Zhang,et al.  Modulation of Microglia by Voluntary Exercise or CSF1R Inhibition Prevents Age-Related Loss of Functional Motor Units. , 2019, Cell reports.

[129]  E. Wohleb,et al.  The formative role of microglia in stress-induced synaptic deficits and associated behavioral consequences , 2019, Neuroscience Letters.

[130]  D. Ragozzino,et al.  Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission. , 2019, Seminars in cell & developmental biology.

[131]  Joakim Lundeberg,et al.  Molecular atlas of the adult mouse brain , 2019, Science Advances.

[132]  Concha Bielza,et al.  A community-based transcriptomics classification and nomenclature of neocortical cell types , 2019, Nature Neuroscience.

[133]  Kevin F. Bieniek,et al.  Microglia in frontotemporal lobar degeneration with progranulin or C9ORF72 mutations , 2019, Annals of clinical and translational neurology.

[134]  Steffen Jung,et al.  Comparative analysis of CreER transgenic mice for the study of brain macrophages – a case study , 2019, bioRxiv.

[135]  M. J. Bellizzi,et al.  Complement-dependent synapse loss and microgliosis in a mouse model of multiple sclerosis , 2019, Brain, Behavior, and Immunity.

[136]  M. Prinz,et al.  Macrophages at CNS interfaces: ontogeny and function in health and disease , 2019, Nature Reviews Neuroscience.

[137]  M. Colonna,et al.  Fifty Shades of Microglia , 2019, Trends in Neurosciences.

[138]  V. Miron,et al.  The pro-remyelination properties of microglia in the central nervous system , 2019, Nature Reviews Neurology.

[139]  P. D. De Jager,et al.  The landscape of myeloid and astrocyte phenotypes in acute multiple sclerosis lesions , 2019, Acta Neuropathologica Communications.

[140]  G. Feng,et al.  Tmem119-EGFP and Tmem119-CreERT2 Transgenic Mice for Labeling and Manipulating Microglia , 2019, eNeuro.

[141]  Virginia Savova,et al.  Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species. , 2019, Immunity.

[142]  Nicola Thrupp,et al.  The Major Risk Factors for Alzheimer’s Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques , 2019, Cell reports.

[143]  A. Deutch,et al.  Microglial Pruning of Synapses in the Prefrontal Cortex During Adolescence , 2019, Cerebral cortex.

[144]  J. Morris,et al.  A single-nuclei RNA sequencing study of Mendelian and sporadic AD in the human brain , 2019, Alzheimer's Research & Therapy.

[145]  Sagar,et al.  Author Correction: Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution , 2019, Nature.

[146]  L. Garcia-Segura,et al.  IGF1 Gene Therapy Modifies Microglia in the Striatum of Senile Rats , 2019, Front. Aging Neurosci..

[147]  G. Pinkus,et al.  Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity , 2019, Cell.

[148]  Evan Z. Macosko,et al.  Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution , 2019, Science.

[149]  Lei Zhang,et al.  Microglia, complement and schizophrenia , 2019, Nature Neuroscience.

[150]  Roy H. Perlis,et al.  Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning , 2019, Nature Neuroscience.

[151]  André Marques-Smith,et al.  Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits , 2019, Science.

[152]  Evan Z. Macosko,et al.  Single‐Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell‐State Changes , 2019, Immunity.

[153]  R. Kahn,et al.  Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry , 2018, Nature Neuroscience.

[154]  Nimrod D. Rubinstein,et al.  Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region , 2018, Science.

[155]  Emily K. Lehrman,et al.  CD47 Protects Synapses from Excess Microglia-Mediated Pruning during Development , 2018, Neuron.

[156]  B. Nordestgaard,et al.  An updated Alzheimer hypothesis: Complement C3 and risk of Alzheimer's disease—A cohort study of 95,442 individuals , 2018, Alzheimer's & Dementia.

[157]  N. Neff,et al.  Developmental Heterogeneity of Microglia and Brain Myeloid Cells Revealed by Deep Single-Cell RNA Sequencing , 2018, Neuron.

[158]  O. Kovalchuk,et al.  Multimodal Enhancement of Remyelination by Exercise with a Pivotal Role for Oligodendroglial PGC1α. , 2018, Cell reports.

[159]  F. Ginhoux,et al.  Microglia heterogeneity along a spatio–temporal axis: More questions than answers , 2018, Glia.

[160]  A. Isaacs,et al.  C9orf72-mediated ALS and FTD: multiple pathways to disease , 2018, Nature Reviews Neurology.

[161]  Alexander von Ehr,et al.  Postnatal maturation of microglia is associated with alternative activation and activated TGFβ signaling , 2018, Glia.

[162]  K. Zahs,et al.  The role of TREM2 in Alzheimer's disease and other neurodegenerative disorders , 2018, The Lancet Neurology.

[163]  Joseph R. Scarpa,et al.  Epigenetic regulation of brain region-specific microglia clearance activity , 2018, Nature Neuroscience.

[164]  A. Deutch,et al.  (Micro)Glia as Effectors of Cortical Volume Loss in Schizophrenia. , 2018, Schizophrenia bulletin.

[165]  W. Ong,et al.  Localisation of Formyl-Peptide Receptor 2 in the Rat Central Nervous System and Its Role in Axonal and Dendritic Outgrowth , 2018, Neurochemical Research.

[166]  D. Minciacchi,et al.  Deletion of the endogenous TrkB.T1 receptor isoform restores the number of hippocampal CA1 parvalbumin-positive neurons and rescues long-term potentiation in pre-symptomatic mSOD1(G93A) ALS mice , 2018, Molecular and Cellular Neuroscience.

[167]  A. Levey,et al.  Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease , 2018, Molecular Neurodegeneration.

[168]  I. Amit,et al.  Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration , 2018, Cell.

[169]  L. Piccio,et al.  The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity , 2018, Immunity.

[170]  A. Tolkovsky,et al.  Neuronal Cell Death. , 2018, Physiological reviews.

[171]  Kevin W. Kelley,et al.  Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development , 2018, Science.

[172]  G. Nolan,et al.  Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models , 2018, Nature Neuroscience.

[173]  M. Llorens-Martín,et al.  Absence of microglial CX3CR1 impairs the synaptic integration of adult-born hippocampal granule neurons , 2018, Brain, Behavior, and Immunity.

[174]  S. Pașca,et al.  The rise of three-dimensional human brain cultures , 2018, Nature.

[175]  Melanie A. Huntley,et al.  Diverse Brain Myeloid Expression Profiles Reveal Distinct Microglial Activation States and Aspects of Alzheimer's Disease Not Evident in Mouse Models. , 2018, Cell reports.

[176]  B. Barres,et al.  Microglia and macrophages in brain homeostasis and disease , 2017, Nature Reviews Immunology.

[177]  C. Greer,et al.  CNS Neurons Deposit Laminin α5 to Stabilize Synapses , 2017, Cell reports.

[178]  A. Regev,et al.  Temporal Tracking of Microglia Activation in Neurodegeneration at Single-Cell Resolution , 2017, Cell reports.

[179]  A. Waisman,et al.  A novel microglial subset plays a key role in myelinogenesis in developing brain , 2017, The EMBO journal.

[180]  I. Amit,et al.  Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner , 2017, Nature Communications.

[181]  James Hicks,et al.  Unravelling biology and shifting paradigms in cancer with single-cell sequencing , 2017, Nature Reviews Cancer.

[182]  G. Rimbach,et al.  Evolution of human apolipoprotein E (APOE) isoforms: Gene structure, protein function and interaction with dietary factors , 2017, Ageing Research Reviews.

[183]  Zheng-Xiong Xi,et al.  Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia , 2017, Neuron.

[184]  M. Prinz,et al.  Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood , 2017, Acta Neuropathologica.

[185]  T. Südhof,et al.  IGF1-Dependent Synaptic Plasticity of Mitral Cells in Olfactory Memory during Social Learning , 2017, Neuron.

[186]  R. Leite,et al.  Transcriptomic analysis of purified human cortical microglia reveals age-associated changes , 2017, Nature Neuroscience.

[187]  I. Amit,et al.  A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.

[188]  Neha U. Keshav,et al.  Autism spectrum disorder: neuropathology and animal models , 2017, Acta Neuropathologica.

[189]  P. Bickford,et al.  Proteomic anaysis of aged microglia: shifts in transcription, bioenergetics, and nutrient response , 2017, Journal of Neuroinflammation.

[190]  P. Atadja,et al.  An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. , 2017, Nature chemical biology.

[191]  S. Amor,et al.  Multiple sclerosis animal models: a clinical and histopathological perspective , 2017, Brain pathology.

[192]  Mariella G. Filbin,et al.  Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq , 2017, Science.

[193]  R. Ransohoff,et al.  Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer's Disease , 2017, The Journal of Neuroscience.

[194]  Matylda Roszkowska,et al.  CD44: a novel synaptic cell adhesion molecule regulating structural and functional plasticity of dendritic spines , 2016, Molecular biology of the cell.

[195]  Lisa S. Rotenstein,et al.  Prevalence of Depression, Depressive Symptoms, and Suicidal Ideation Among Medical Students: A Systematic Review and Meta-Analysis. , 2016, JAMA.

[196]  Bi-li Zhang,et al.  [Advances in clinical research on C1q nephropathy]. , 2016, Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics.

[197]  Mariella G. Filbin,et al.  Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma , 2016, Nature.

[198]  R. Riikonen Treatment of autistic spectrum disorder with insulin-like growth factors. , 2016, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[199]  J. Correale,et al.  Progressive multiple sclerosis: from pathogenic mechanisms to treatment. , 2016, Brain : a journal of neurology.

[200]  L. Cai,et al.  In Situ Transcription Profiling of Single Cells Reveals Spatial Organization of Cells in the Mouse Hippocampus , 2016, Neuron.

[201]  J. Qian,et al.  A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1 , 2016, Science.

[202]  Y. Yoshimura,et al.  Microglia contact induces synapse formation in developing somatosensory cortex , 2016, Nature Communications.

[203]  I. Amit,et al.  Microglia development follows a stepwise program to regulate brain homeostasis , 2016, Science.

[204]  R. Ransohoff A polarizing question: do M1 and M2 microglia exist? , 2016, Nature Neuroscience.

[205]  Ukpong B. Eyo,et al.  Developmental changes in microglial mobilization are independent of apoptosis in the neonatal mouse hippocampus , 2016, Brain, Behavior, and Immunity.

[206]  R. Desikan,et al.  The relationship between complement factor C3, APOE ε4, amyloid and tau in Alzheimer’s disease , 2016, Acta neuropathologica communications.

[207]  Robert E. Schmidt,et al.  A complement–microglial axis drives synapse loss during virus-induced memory impairment , 2016, Nature.

[208]  S. Shorte,et al.  Phenotypic clustering: a novel method for microglial morphology analysis , 2016, Journal of Neuroinflammation.

[209]  V. Sartorelli,et al.  Polycomb Ezh2 controls the fate of GABAergic neurons in the embryonic cerebellum , 2016, Development.

[210]  Charles C. Kim,et al.  Brain trauma elicits non-canonical macrophage activation states , 2016, Journal of Neuroinflammation.

[211]  D. Selkoe,et al.  Complement and microglia mediate early synapse loss in Alzheimer mouse models , 2016, Science.

[212]  D. Holtzman,et al.  TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques , 2016, The Journal of experimental medicine.

[213]  Jeffery A. Hall,et al.  MerTK Is a Functional Regulator of Myelin Phagocytosis by Human Myeloid Cells , 2016, The Journal of Immunology.

[214]  Scott E. Nixon,et al.  Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge , 2016, PloS one.

[215]  Shannon E. Ellis,et al.  Transcriptome analysis of cortical tissue reveals shared sets of downregulated genes in autism and schizophrenia , 2016, bioRxiv.

[216]  P. Liu,et al.  Region-specific changes in presynaptic agmatine and glutamate levels in the aged rat brain , 2016, Neuroscience.

[217]  Takahiro Takano,et al.  Purinergic receptor P2RY12-dependent microglial closure of the injured blood–brain barrier , 2016, Proceedings of the National Academy of Sciences.

[218]  Tom Michoel,et al.  Microglial brain region-dependent diversity and selective regional sensitivities to ageing , 2015, Nature Neuroscience.

[219]  Matthias Mann,et al.  Cell type– and brain region–resolved mouse brain proteome , 2015, Nature Neuroscience.

[220]  Melitta Schachner,et al.  Age‐dependent loss of parvalbumin‐expressing hippocampal interneurons in mice deficient in CHL1, a mental retardation and schizophrenia susceptibility gene , 2015, Journal of neurochemistry.

[221]  C. Funk,et al.  Arginase-1 deficiency , 2015, Journal of Molecular Medicine.

[222]  R. Franklin,et al.  Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination. , 2015, Brain : a journal of neurology.

[223]  H. Boddeke,et al.  Glia Open Access Database (GOAD): A comprehensive gene expression encyclopedia of glia cells in health and disease , 2015, Glia.

[224]  Reint K Jellema,et al.  Intra-Amniotic LPS Induced Region-Specific Changes in Presynaptic Bouton Densities in the Ovine Fetal Brain , 2015, BioMed research international.

[225]  K. Green,et al.  Elimination of Microglia Improves Functional Outcomes Following Extensive Neuronal Loss in the Hippocampus , 2015, The Journal of Neuroscience.

[226]  D. Häussinger,et al.  Hyperargininemia due to arginase I deficiency: the original patients and their natural history, and a review of the literature , 2015, Amino Acids.

[227]  Tuan Leng Tay,et al.  USP18 lack in microglia causes destructive interferonopathy of the mouse brain , 2015, The EMBO journal.

[228]  S. Thompson,et al.  An excitatory synapse hypothesis of depression , 2015, Trends in Neurosciences.

[229]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[230]  D. Gomez-Nicola,et al.  Post-mortem analysis of neuroinflammatory changes in human Alzheimer’s disease , 2015, Alzheimer's Research & Therapy.

[231]  H. Boddeke,et al.  Brain region-specific gene expression profiles in freshly isolated rat microglia , 2015, Front. Cell. Neurosci..

[232]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[233]  W. Le,et al.  Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases , 2015, Molecular Neurobiology.

[234]  A. Smit,et al.  Interaction proteomics reveals brain region-specific AMPA receptor complexes. , 2014, Journal of proteome research.

[235]  R. Bucala,et al.  Down‐regulation of MIF by NFκB under hypoxia accelerated neuronal loss during stroke , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[236]  B. Trapp,et al.  Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain , 2014, Nature Communications.

[237]  N. Ordóñez Arginase-1 is a Novel Immunohistochemical Marker of Hepatocellular Differentiation , 2014, Advances in anatomic pathology.

[238]  M. Owen,et al.  Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder. , 2014, Schizophrenia bulletin.

[239]  George M. Church,et al.  Highly Multiplexed Subcellular RNA Sequencing in Situ , 2014, Science.

[240]  Guy C. Brown,et al.  Microglial phagocytosis of live neurons , 2014, Nature Reviews Neuroscience.

[241]  S. Gordon,et al.  The M1 and M2 paradigm of macrophage activation: time for reassessment , 2014, F1000prime reports.

[242]  O. Ottersen,et al.  The Nuclear Calcium Signaling Target, Activating Transcription Factor 3 (ATF3), Protects against Dendrotoxicity and Facilitates the Recovery of Synaptic Transmission after an Excitotoxic Insult* , 2014, The Journal of Biological Chemistry.

[243]  Y. Sekino,et al.  Microglia Enhance Neurogenesis and Oligodendrogenesis in the Early Postnatal Subventricular Zone , 2014, The Journal of Neuroscience.

[244]  B. Giros,et al.  Morphometric characterization of microglial phenotypes in human cerebral cortex , 2014, Journal of Neuroinflammation.

[245]  S. Gygi,et al.  Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia , 2013, Nature Neuroscience.

[246]  C. Théry,et al.  Phagocytosis executes delayed neuronal death after focal brain ischemia , 2013, Proceedings of the National Academy of Sciences.

[247]  Jianxin Shi,et al.  Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs , 2013, Nature Genetics.

[248]  W. Marsden Synaptic plasticity in depression: Molecular, cellular and functional correlates , 2013, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[249]  M. Ishii,et al.  Layer V cortical neurons require microglial support for survival during postnatal development , 2013, Nature Neuroscience.

[250]  V. Perry,et al.  Regulation of Microglial Proliferation during Chronic Neurodegeneration , 2013, The Journal of Neuroscience.

[251]  F. Rosenbauer,et al.  Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways , 2013, Nature Neuroscience.

[252]  F. Kirchhoff,et al.  Microglia: New Roles for the Synaptic Stripper , 2013, Neuron.

[253]  F. Deák,et al.  Aging, synaptic dysfunction, and insulin-like growth factor (IGF)-1. , 2012, The journals of gerontology. Series A, Biological sciences and medical sciences.

[254]  Ben A. Barres,et al.  Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner , 2012, Neuron.

[255]  J. Pollard,et al.  A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells , 2012, Science.

[256]  J. Schneider,et al.  Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. , 2012, The Journal of clinical investigation.

[257]  Jing-Wei Zhao,et al.  MFG-E8 Mediates Primary Phagocytosis of Viable Neurons during Neuroinflammation , 2012, The Journal of Neuroscience.

[258]  A. Nimmerjahn,et al.  The Role of Microglia in the Healthy Brain , 2011, The Journal of Neuroscience.

[259]  M. Giustetto,et al.  Synaptic Pruning by Microglia Is Necessary for Normal Brain Development , 2011, Science.

[260]  Guy C. Brown,et al.  Neuronal Death Induced by Nanomolar Amyloid β Is Mediated by Primary Phagocytosis of Neurons by Microglia* , 2011, The Journal of Biological Chemistry.

[261]  A. Mildner,et al.  Distinct and Non-Redundant Roles of Microglia and Myeloid Subsets in Mouse Models of Alzheimer's Disease , 2011, The Journal of Neuroscience.

[262]  A. Tolkovsky,et al.  Inhibition of Microglial Phagocytosis Is Sufficient To Prevent Inflammatory Neuronal Death , 2011, The Journal of Immunology.

[263]  J. Troge,et al.  Tumour evolution inferred by single-cell sequencing , 2011, Nature.

[264]  M. Schwaninger,et al.  A Signaling Cascade of Nuclear Calcium-CREB-ATF3 Activated by Synaptic NMDA Receptors Defines a Gene Repression Module That Protects against Extrasynaptic NMDA Receptor-Induced Neuronal Cell Death and Ischemic Brain Damage , 2011, The Journal of Neuroscience.

[265]  F. Ginhoux,et al.  Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages , 2010, Science.

[266]  B. Dean,et al.  Region and diagnosis-specific changes in synaptic proteins in schizophrenia and bipolar I disorder , 2010, Psychiatry Research.

[267]  R. V. Vugt,et al.  Local insulin-like growth factor I expression is essential for Purkinje neuron survival at birth , 2010, Cell Death and Differentiation.

[268]  C. Colton,et al.  Assessing activation states in microglia. , 2010, CNS & neurological disorders drug targets.

[269]  M. Owen,et al.  Genetic overlap between autism, schizophrenia and bipolar disorder , 2009, Genome Medicine.

[270]  A. Torvik,et al.  Congenital neuronal ceroid lipofuscinosis. A case report. , 2009, Acta pathologica, microbiologica, et immunologica Scandinavica. Section A, Pathology.

[271]  C. Colton Heterogeneity of Microglial Activation in the Innate Immune Response in the Brain , 2009, Journal of Neuroimmune Pharmacology.

[272]  Catalin C. Barbacioru,et al.  mRNA-Seq whole-transcriptome analysis of a single cell , 2009, Nature Methods.

[273]  J. Nabekura,et al.  Resting Microglia Directly Monitor the Functional State of Synapses In Vivo and Determine the Fate of Ischemic Terminals , 2009, The Journal of Neuroscience.

[274]  A. Paetau,et al.  Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo , 2009, Molecular Brain.

[275]  K. Rostásy,et al.  Amino acids in CSF and plasma in hyperammonaemic coma due to arginase1 deficiency , 2008, Journal of Inherited Metabolic Disease.

[276]  E. Nestler,et al.  Induction of Activating Transcription Factors (ATFs) ATF2, ATF3, and ATF4 in the Nucleus Accumbens and Their Regulation of Emotional Behavior , 2008, The Journal of Neuroscience.

[277]  P. Saftig,et al.  Synaptic Changes in the Thalamocortical System of Cathepsin D-Deficient Mice: A Model of Human Congenital Neuronal Ceroid-Lipofuscinosis , 2008, Journal of neuropathology and experimental neurology.

[278]  E. Ponomarev,et al.  CNS-Derived Interleukin-4 Is Essential for the Regulation of Autoimmune Inflammation and Induces a State of Alternative Activation in Microglial Cells , 2007, The Journal of Neuroscience.

[279]  D. Webb,et al.  α5 Integrin Signaling Regulates the Formation of Spines and Synapses in Hippocampal Neurons* , 2007, Journal of Biological Chemistry.

[280]  W. Gan,et al.  The P2Y12 receptor regulates microglial activation by extracellular nucleotides , 2006, Nature Neuroscience.

[281]  A. Lehesjoki,et al.  Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. , 2006, Brain : a journal of neurology.

[282]  A. Sica,et al.  Macrophage polarization comes of age. , 2005, Immunity.

[283]  W. Gan,et al.  ATP mediates rapid microglial response to local brain injury in vivo , 2005, Nature Neuroscience.

[284]  F. Helmchen,et al.  Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo , 2005, Science.

[285]  W. Le,et al.  (−)‐Epigallocatechin gallate inhibits lipopolysaccharide‐induced microglial activation and protects against inflammation‐mediated dopaminergic neuronal injury , 2004, Journal of neuroscience research.

[286]  D. Morgan,et al.  Time-dependent reduction in Aβ levels after intracranial LPS administration in APP transgenic mice , 2004, Experimental Neurology.

[287]  R. Dingledine,et al.  Reciprocal changes of CD44 and GAP-43 expression in the dentate gyrus inner molecular layer after status epilepticus in mice , 2004, Experimental Neurology.

[288]  D. Selkoe,et al.  The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics , 2002, Science.

[289]  Wenjie Xie,et al.  Microglial Activation and Dopaminergic Cell Injury: An In Vitro Model Relevant to Parkinson's Disease , 2001, The Journal of Neuroscience.

[290]  C. Plata-salamán,et al.  Inflammation and Alzheimer’s disease , 2000, Neurobiology of Aging.

[291]  Ben A. Barres,et al.  Axonal Control of Oligodendrocyte Development , 1999, The Journal of cell biology.

[292]  T. Marunouchi,et al.  Interleukin‐10 Inhibits Both Production of Cytokines and Expression of Cytokine Receptors in Microglia , 1999, Journal of neurochemistry.

[293]  Junying Yuan,et al.  Inhibition of ICE slows ALS in mice , 1997, Nature.

[294]  F. Hefti,et al.  Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons , 1995, Neuron.

[295]  V. Perry,et al.  Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain , 1990, Neuroscience.

[296]  H. Taussig Evolutionary origin of cardiac malformations. , 1988, Journal of the American College of Cardiology.

[297]  M. Kingston,et al.  Maintenance of Basal Insulin Secretion in Severe Non-Insulin-Dependent Diabetes , 1986, Diabetes Care.

[298]  T. Ohashi,et al.  [Evaluation for the utility of the post-auricular response evoked by acoustic stimuli in objective audiometry (author's transl)]. , 1975, Nihon Jibiinkoka Gakkai kaiho.

[299]  OUP accepted manuscript , 2022, Brain.

[300]  Mehdi Jorfi,et al.  Three‐Dimensional Models of the Human Brain Development and Diseases , 2018, Advanced healthcare materials.

[301]  Staci A. Sorensen,et al.  Adult Mouse Cortical Cell Taxonomy Revealed by Single Cell Transcriptomics , 2016 .

[302]  Qian-Qian Jiang,et al.  Region-specific expression of tau, amyloid-β protein precursor, and synaptic proteins at physiological condition or under endoplasmic reticulum stress in rats. , 2014, Journal of Alzheimer's disease : JAD.

[303]  D. Selkoe Alzheimer's disease. , 2011, Cold Spring Harbor perspectives in biology.

[304]  L. Thorne,et al.  Novel mutation and the first prenatal screening of cathepsin D deficiency (CLN10) , 2008, Acta Neuropathologica.

[305]  M. Block,et al.  Microglia-mediated neurotoxicity: uncovering the molecular mechanisms , 2007, Nature Reviews Neuroscience.

[306]  T. Gillingwater,et al.  Morphologic and Functional Correlates of Synaptic Pathology in the Cathepsin D Knockout Mouse Model of Congenital Neuronal Ceroid Lipofuscinosis , 2011, Journal of neuropathology and experimental neurology.