Systematics of the mass-asymmetric fission of excited nuclei from 176Os to 206Pb
暂无分享,去创建一个
M. Dasgupta | D. Hinde | E. Simpson | C. Simenel | K. Cook | J. Smith | B. Swinton-Bland | D. Jeung | E. Williams | E. Prasad | D. Rafferty | C. Sengupta | K. Vo-Phuoc | J. Walshe | R. Bernard | A. Berriman | David Hinde | Annette Berriman | B. M. A. Swinton-Bland
[1] A. Prochazka,et al. Experimental study of nuclear fission along the thorium isotopic chain: From asymmetric to symmetric fission , 2019, Physical Review C.
[2] W. Nazarewicz,et al. Observation of the competing fission modes in 178Pt , 2019, Physics Letters B.
[3] P. Möller,et al. The microscopic mechanism behind the fission-barrier asymmetry (II): The rare-earth region 50 < Z < 82 and 82 < N < 126 , 2018, Physics Letters B.
[4] Beatriz Jurado,et al. Review on the progress in nuclear fission—experimental methods and theoretical descriptions , 2018, Reports on progress in physics. Physical Society.
[5] C. Simenel,et al. Impact of pear-shaped fission fragments on mass-asymmetric fission in actinides , 2018, Nature.
[6] D. H. Luong,et al. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei , 2018 .
[7] A. Andreev,et al. Asymmetry of fission fragment mass distribution for Po and Ir isotopes , 2016 .
[8] K.-H. Schmidt,et al. General Description of Fission Observables: GEF Model Code , 2016 .
[9] F. Hessberger,et al. Excitation energy dependence of fragment-mass distributions from fission of 180,190 Hg formed in fusion reactions of 36 Ar + 144,154 Sm , 2015 .
[10] K. Mahata,et al. Fission fragment mass distributions in Cl 35 + Sm 144 , 154 reactions , 2015 .
[11] D. H. Luong,et al. Observation of mass-asymmetric fission of mercury nuclei in heavy ion fusion , 2015 .
[12] D. H. Luong,et al. Experimental study of the quasifission, fusion-fission, and de-excitation of Cf compound nuclei , 2015 .
[13] D. H. Luong,et al. Mapping quasifission characteristics and timescales in heavy element formation reactions , 2013 .
[14] A. Andreev,et al. Isospin dependence of mass-distribution shape of fission fragments of Hg isotopes , 2013 .
[15] M. Huyse,et al. Colloquium: Beta-delayed fission of atomic nuclei , 2013 .
[16] D. Joss,et al. β-delayed fission and α decay of 178Tl , 2013 .
[17] P. Bergh,et al. β-delayed fission of 180 Tl , 2013 .
[18] A. Donald,et al. Supplemental Material to , 2013 .
[19] S. Panebianco,et al. Role of deformed shell effects on the mass asymmetry in nuclear fission of mercury isotopes , 2012 .
[20] F. Thielemann,et al. Have superheavy elements been produced in nature? , 2012, 1207.3432.
[21] A. Sierk,et al. The Contrasting fission potential-energy structure of actinides and mercury isotopes , 2012, 1203.2011.
[22] P. Möller,et al. Calculated fission yields of neutron-deficient mercury isotopes , 2012 .
[23] A. Andreev,et al. Mass distributions for induced fission of different Hg isotopes , 2011, 1112.2798.
[24] V. Fedosseev,et al. New type of asymmetric fission in proton-rich nuclei. , 2010, Physical review letters.
[25] D. Fisica,et al. Quasifission processes in {sup 40,48}Ca+{sup 144,154}Sm reactions , 2007 .
[26] F. Thielemann,et al. Calculations of fission rates for r-process nucleosynthesis , 2004, astro-ph/0412654.
[27] F. Strassmann,et al. Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle , 2005, Naturwissenschaften.
[28] Y. Aritomo,et al. Dynamical calculation for fusion–fission probability in superheavy mass region, where mass symmetric fission events originate , 2004 .
[29] E. Kugler,et al. The ISOLDE facility , 2000 .
[30] Bernd Voss,et al. Relativistic radioactive beams: A new access to nuclear-fission studies ☆ , 2000 .
[31] P. Armbruster. Nuclear structure in cold rearrangement processes in fission and fusion , 1999 .
[32] D. Florian,et al. Phenomenology of forward hadrons in deep inelastic scattering: Fracture functions and its Q 2 evolution , 1997, hep-ph/9703228.
[33] Leigh,et al. Conclusive evidence for the influence of nuclear orientation on quasifission. , 1996, Physical review. C, Nuclear physics.
[34] V. N. Okolovich,et al. Symmetric and asymmetric fission of nuclei lighter than radium , 1989 .
[35] J. Błocki,et al. Dynamical hindrance to compound-nucleus formation in heavy-ion reactions☆ , 1986 .
[36] V. N. Okolovich,et al. Asymmetric fission of the pre-actinide nuclei , 1985 .
[37] B. Back,et al. Quasi-fission — The mass-drift mode in heavy-ion reactions , 1985 .
[38] Walker,et al. Systematics of fission fragment total kinetic energy release. , 1985, Physical review. C, Nuclear physics.
[39] W. J. Swiatecki,et al. THE DYNAMICS OF NUCLEAR COALESCENCE OR RESEPARATION , 1981 .
[40] B. Wilkins,et al. Scission-point model of nuclear fission based on deformed-shell effects , 1976 .
[41] C. Wene,et al. The Importance of Delayed Fission in the Production of very Heavy and Superheavy Elements , 1974 .
[42] J. Huizenga,et al. Nuclear Fission , 2006 .
[43] V. V. Pashkevich,et al. On the asymmetric deformation of fissioning nuclei , 1971 .
[44] P. Möller,et al. The microscopic mechanism behind the fission barrier asymmetry , 1971 .
[45] M. G. Mayer. Nuclear Configurations in the Spin-Orbit Coupling Model. II. Theoretical Considerations , 1950 .
[46] L. Meitner. Fission and Nuclear Shell Model , 1950, Nature.
[47] Niels Bohr,et al. The Mechanism of nuclear fission , 1939 .
[48] LISE MEITNER,et al. Disintegration of Uranium by Neutrons: a New Type of Nuclear Reaction , 1939, Nature.