Systematics of the mass-asymmetric fission of excited nuclei from 176Os to 206Pb

[1]  A. Prochazka,et al.  Experimental study of nuclear fission along the thorium isotopic chain: From asymmetric to symmetric fission , 2019, Physical Review C.

[2]  W. Nazarewicz,et al.  Observation of the competing fission modes in 178Pt , 2019, Physics Letters B.

[3]  P. Möller,et al.  The microscopic mechanism behind the fission-barrier asymmetry (II): The rare-earth region 50 < Z < 82 and 82 < N < 126 , 2018, Physics Letters B.

[4]  Beatriz Jurado,et al.  Review on the progress in nuclear fission—experimental methods and theoretical descriptions , 2018, Reports on progress in physics. Physical Society.

[5]  C. Simenel,et al.  Impact of pear-shaped fission fragments on mass-asymmetric fission in actinides , 2018, Nature.

[6]  D. H. Luong,et al.  Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei , 2018 .

[7]  A. Andreev,et al.  Asymmetry of fission fragment mass distribution for Po and Ir isotopes , 2016 .

[8]  K.-H. Schmidt,et al.  General Description of Fission Observables: GEF Model Code , 2016 .

[9]  F. Hessberger,et al.  Excitation energy dependence of fragment-mass distributions from fission of 180,190 Hg formed in fusion reactions of 36 Ar + 144,154 Sm , 2015 .

[10]  K. Mahata,et al.  Fission fragment mass distributions in Cl 35 + Sm 144 , 154 reactions , 2015 .

[11]  D. H. Luong,et al.  Observation of mass-asymmetric fission of mercury nuclei in heavy ion fusion , 2015 .

[12]  D. H. Luong,et al.  Experimental study of the quasifission, fusion-fission, and de-excitation of Cf compound nuclei , 2015 .

[13]  D. H. Luong,et al.  Mapping quasifission characteristics and timescales in heavy element formation reactions , 2013 .

[14]  A. Andreev,et al.  Isospin dependence of mass-distribution shape of fission fragments of Hg isotopes , 2013 .

[15]  M. Huyse,et al.  Colloquium: Beta-delayed fission of atomic nuclei , 2013 .

[16]  D. Joss,et al.  β-delayed fission and α decay of 178Tl , 2013 .

[17]  P. Bergh,et al.  β-delayed fission of 180 Tl , 2013 .

[18]  A. Donald,et al.  Supplemental Material to , 2013 .

[19]  S. Panebianco,et al.  Role of deformed shell effects on the mass asymmetry in nuclear fission of mercury isotopes , 2012 .

[20]  F. Thielemann,et al.  Have superheavy elements been produced in nature? , 2012, 1207.3432.

[21]  A. Sierk,et al.  The Contrasting fission potential-energy structure of actinides and mercury isotopes , 2012, 1203.2011.

[22]  P. Möller,et al.  Calculated fission yields of neutron-deficient mercury isotopes , 2012 .

[23]  A. Andreev,et al.  Mass distributions for induced fission of different Hg isotopes , 2011, 1112.2798.

[24]  V. Fedosseev,et al.  New type of asymmetric fission in proton-rich nuclei. , 2010, Physical review letters.

[25]  D. Fisica,et al.  Quasifission processes in {sup 40,48}Ca+{sup 144,154}Sm reactions , 2007 .

[26]  F. Thielemann,et al.  Calculations of fission rates for r-process nucleosynthesis , 2004, astro-ph/0412654.

[27]  F. Strassmann,et al.  Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle , 2005, Naturwissenschaften.

[28]  Y. Aritomo,et al.  Dynamical calculation for fusion–fission probability in superheavy mass region, where mass symmetric fission events originate , 2004 .

[29]  E. Kugler,et al.  The ISOLDE facility , 2000 .

[30]  Bernd Voss,et al.  Relativistic radioactive beams: A new access to nuclear-fission studies ☆ , 2000 .

[31]  P. Armbruster Nuclear structure in cold rearrangement processes in fission and fusion , 1999 .

[32]  D. Florian,et al.  Phenomenology of forward hadrons in deep inelastic scattering: Fracture functions and its Q 2 evolution , 1997, hep-ph/9703228.

[33]  Leigh,et al.  Conclusive evidence for the influence of nuclear orientation on quasifission. , 1996, Physical review. C, Nuclear physics.

[34]  V. N. Okolovich,et al.  Symmetric and asymmetric fission of nuclei lighter than radium , 1989 .

[35]  J. Błocki,et al.  Dynamical hindrance to compound-nucleus formation in heavy-ion reactions☆ , 1986 .

[36]  V. N. Okolovich,et al.  Asymmetric fission of the pre-actinide nuclei , 1985 .

[37]  B. Back,et al.  Quasi-fission — The mass-drift mode in heavy-ion reactions , 1985 .

[38]  Walker,et al.  Systematics of fission fragment total kinetic energy release. , 1985, Physical review. C, Nuclear physics.

[39]  W. J. Swiatecki,et al.  THE DYNAMICS OF NUCLEAR COALESCENCE OR RESEPARATION , 1981 .

[40]  B. Wilkins,et al.  Scission-point model of nuclear fission based on deformed-shell effects , 1976 .

[41]  C. Wene,et al.  The Importance of Delayed Fission in the Production of very Heavy and Superheavy Elements , 1974 .

[42]  J. Huizenga,et al.  Nuclear Fission , 2006 .

[43]  V. V. Pashkevich,et al.  On the asymmetric deformation of fissioning nuclei , 1971 .

[44]  P. Möller,et al.  The microscopic mechanism behind the fission barrier asymmetry , 1971 .

[45]  M. G. Mayer Nuclear Configurations in the Spin-Orbit Coupling Model. II. Theoretical Considerations , 1950 .

[46]  L. Meitner Fission and Nuclear Shell Model , 1950, Nature.

[47]  Niels Bohr,et al.  The Mechanism of nuclear fission , 1939 .

[48]  LISE MEITNER,et al.  Disintegration of Uranium by Neutrons: a New Type of Nuclear Reaction , 1939, Nature.