Maximal supersymmetry and B-mode targets
暂无分享,去创建一个
[1] Peter Ade,et al. Exploring cosmic origins with CORE: Gravitational lensing of the CMB , 2017, 1707.02259.
[2] Edward J. Wollack,et al. Cosmological Parameters From Pre-Planck CMB Measurements: A 2017 Update , 2017, 1702.03272.
[3] T. Kitching,et al. Exploring cosmic origins with CORE: Inflation , 2016, 1612.08270.
[4] J. Dunkley,et al. Complementing the ground-based CMB-S4 experiment on large scales with the PIXIE satellite , 2016, 1611.10269.
[5] Andrei Linde,et al. Gravitational waves and large field inflation , 2016, 1612.00020.
[6] S. Ferrara,et al. Seven-Disk Manifold, alpha-attractors and B-modes , 2016, 1610.04163.
[7] Adrian T. Lee,et al. CMB-S4 Science Book, First Edition , 2016, 1610.02743.
[8] R. Flauger,et al. Robustness of inflation to inhomogeneous initial conditions , 2016, 1608.04408.
[9] Andrei Linde. On inflation, cosmological constant, and SUSY breaking , 2016, 1608.00119.
[10] Andrei Linde,et al. Sneutrino Inflation with α-attractors , 2016, 1607.08854.
[11] M. Eshaghi,et al. CMB and reheating constraints to $\alpha$-attractor inflationary models , 2016, 1602.07914.
[12] L. Senatore,et al. Inhomogeneous anisotropic cosmology , 2016, 1602.03520.
[13] R. W. Ogburn,et al. Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. , 2016, Physical review letters.
[14] F. Quevedo,et al. Global string embeddings for the nilpotent Goldstino , 2015, 1512.06926.
[15] L. Senatore,et al. Beginning inflation in an inhomogeneous universe , 2015, Journal of Cosmology and Astroparticle Physics.
[16] J. Polchinski. Brane/antibrane dynamics and KKLT stability , 2015, 1509.05710.
[17] R. Kallosh,et al. String theory realizations of the nilpotent goldstino , 2015, 1507.07556.
[18] A. Westphal,et al. Pole inflation — Shift symmetry and universal corrections , 2015, 1507.02277.
[19] Andrei Linde,et al. Cosmological attractors and initial conditions for inflation , 2015, Physical Review D.
[20] K. Dasgupta,et al. D3¯ and dS , 2015 .
[21] Andrei Linde,et al. Hyperbolic geometry of cosmological attractors , 2015, 1504.05557.
[22] Andrei Linde,et al. Unity of cosmological inflation attractors. , 2015, Physical review letters.
[23] Andrei Linde,et al. Escher in the Sky , 2015, Comptes Rendus Physique.
[24] Andrei Linde,et al. Planck, LHC, and $\alpha$-attractors , 2015, 1502.07733.
[25] K. Dasgupta,et al. D3¯$$ \overline{\mathrm{D}3} $$ and dS , 2015, 1502.07627.
[26] G. W. Pratt,et al. Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.
[27] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[28] Andrei Linde. Does the first chaotic inflation model in supergravity provide the best fit to the Planck data? , 2014, 1412.7111.
[29] M. Zaldarriaga,et al. Implications of the scalar tilt for the tensor-to-scalar ratio , 2014, 1412.0678.
[30] R. Kallosh,et al. Emergence of spontaneously broken supersymmetry on an anti-D3-brane in KKLT dS vacua , 2014, 1411.1121.
[31] Andrei Linde,et al. Cosmology with nilpotent superfields , 2014, 1408.4096.
[32] A. Westphal,et al. The powers of monodromy , 2014, 1405.3652.
[33] S. Ferrara,et al. The Volkov–Akulov–Starobinsky supergravity , 2014, 1403.3269.
[34] R. Kallosh,et al. Cosmological attractor models and higher curvature supergravity , 2014, 1403.2932.
[35] J. García-Bellido,et al. Large-N running of the spectral index of inflation , 2014, 1402.2059.
[36] Andrei Linde. Inflationary Cosmology after Planck 2013 , 2014, 1402.0526.
[37] Andrei Linde,et al. Superconformal inflationary α-attractors , 2013, 1311.0472.
[38] D. Roest. Universality classes of inflation , 2013, 1309.1285.
[39] Andrei Linde,et al. Minimal Supergravity Models of Inflation , 2013, 1307.7696.
[40] S. Amerio,et al. Study of B0(s)→K0Sh+h′− decays with first observation of B0s→K0SK±π∓ and B0s→K0Sπ+π− , 2013 .
[41] Andrei Linde,et al. Universality class in conformal inflation , 2013, 1306.5220.
[42] Andrei Linde,et al. Superconformal generalizations of the Starobinsky model , 2013, 1306.3214.
[43] V. Mukhanov. Quantum cosmological perturbations: predictions and observations , 2013, 1303.3925.
[44] S. Ferrara,et al. Conjecture on hidden superconformal symmetry of N = 4 supergravity , 2012, 1209.0418.
[45] M. Shaposhnikov,et al. The Standard Model Higgs boson as the inflaton , 2007, 0710.3755.
[46] V. Balasubramanian,et al. Systematics of moduli stabilisation in Calabi-Yau flux compactifications , 2005, hep-th/0502058.
[47] Andrei Linde. Creation of a compact topologically nontrivial inflationary universe , 2004, hep-th/0408164.
[48] J. Maldacena,et al. Towards inflation in string theory , 2003, Journal of Cosmology and Astroparticle Physics.
[49] Andrei Linde,et al. De Sitter vacua in string theory , 2003, hep-th/0301240.
[50] T. Yanagida,et al. Chaotic inflation in supergravity (素粒子物理学の新展開) , 2001 .
[51] A. Liddle,et al. Reconstructing the inflaton potential—an overview , 1995, astro-ph/9508078.
[52] J. Bond,et al. Designing density fluctuation spectra in inflation. , 1989, Physical review. D, Particles and fields.
[53] E. Bergshoeff,et al. Extended conformal supergravity , 1981 .
[54] A. Starobinsky,et al. A new type of isotropic cosmological models without singularity , 1980 .
[55] S. Ferrara,et al. SU(4) Invariant Supergravity Theory , 1978 .
[56] S. Ferrara,et al. Seven-Disk Manifold, α-attractors and B-modes , 2016 .
[57] M. Eshaghi,et al. CMB and reheating constraints to $\alpha$-attractor inflationary models , 2016, 1602.07914.
[58] Andrei Linde,et al. Supercurvaton , 2011 .
[59] M. D. Roo,et al. Matter coupling in N = 4 supergravity , 1985 .
[60] Andrei Linde,et al. CHAOTIC INFLATION OF THE UNIVERSE IN SUPERGRAVITY , 1985 .