Maximal supersymmetry and B-mode targets

[1]  Peter Ade,et al.  Exploring cosmic origins with CORE: Gravitational lensing of the CMB , 2017, 1707.02259.

[2]  Edward J. Wollack,et al.  Cosmological Parameters From Pre-Planck CMB Measurements: A 2017 Update , 2017, 1702.03272.

[3]  T. Kitching,et al.  Exploring cosmic origins with CORE: Inflation , 2016, 1612.08270.

[4]  J. Dunkley,et al.  Complementing the ground-based CMB-S4 experiment on large scales with the PIXIE satellite , 2016, 1611.10269.

[5]  Andrei Linde,et al.  Gravitational waves and large field inflation , 2016, 1612.00020.

[6]  S. Ferrara,et al.  Seven-Disk Manifold, alpha-attractors and B-modes , 2016, 1610.04163.

[7]  Adrian T. Lee,et al.  CMB-S4 Science Book, First Edition , 2016, 1610.02743.

[8]  R. Flauger,et al.  Robustness of inflation to inhomogeneous initial conditions , 2016, 1608.04408.

[9]  Andrei Linde On inflation, cosmological constant, and SUSY breaking , 2016, 1608.00119.

[10]  Andrei Linde,et al.  Sneutrino Inflation with α-attractors , 2016, 1607.08854.

[11]  M. Eshaghi,et al.  CMB and reheating constraints to $\alpha$-attractor inflationary models , 2016, 1602.07914.

[12]  L. Senatore,et al.  Inhomogeneous anisotropic cosmology , 2016, 1602.03520.

[13]  R. W. Ogburn,et al.  Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. , 2016, Physical review letters.

[14]  F. Quevedo,et al.  Global string embeddings for the nilpotent Goldstino , 2015, 1512.06926.

[15]  L. Senatore,et al.  Beginning inflation in an inhomogeneous universe , 2015, Journal of Cosmology and Astroparticle Physics.

[16]  J. Polchinski Brane/antibrane dynamics and KKLT stability , 2015, 1509.05710.

[17]  R. Kallosh,et al.  String theory realizations of the nilpotent goldstino , 2015, 1507.07556.

[18]  A. Westphal,et al.  Pole inflation — Shift symmetry and universal corrections , 2015, 1507.02277.

[19]  Andrei Linde,et al.  Cosmological attractors and initial conditions for inflation , 2015, Physical Review D.

[20]  K. Dasgupta,et al.  D3¯ and dS , 2015 .

[21]  Andrei Linde,et al.  Hyperbolic geometry of cosmological attractors , 2015, 1504.05557.

[22]  Andrei Linde,et al.  Unity of cosmological inflation attractors. , 2015, Physical review letters.

[23]  Andrei Linde,et al.  Escher in the Sky , 2015, Comptes Rendus Physique.

[24]  Andrei Linde,et al.  Planck, LHC, and $\alpha$-attractors , 2015, 1502.07733.

[25]  K. Dasgupta,et al.  D3¯$$ \overline{\mathrm{D}3} $$ and dS , 2015, 1502.07627.

[26]  G. W. Pratt,et al.  Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.

[27]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[28]  Andrei Linde Does the first chaotic inflation model in supergravity provide the best fit to the Planck data? , 2014, 1412.7111.

[29]  M. Zaldarriaga,et al.  Implications of the scalar tilt for the tensor-to-scalar ratio , 2014, 1412.0678.

[30]  R. Kallosh,et al.  Emergence of spontaneously broken supersymmetry on an anti-D3-brane in KKLT dS vacua , 2014, 1411.1121.

[31]  Andrei Linde,et al.  Cosmology with nilpotent superfields , 2014, 1408.4096.

[32]  A. Westphal,et al.  The powers of monodromy , 2014, 1405.3652.

[33]  S. Ferrara,et al.  The Volkov–Akulov–Starobinsky supergravity , 2014, 1403.3269.

[34]  R. Kallosh,et al.  Cosmological attractor models and higher curvature supergravity , 2014, 1403.2932.

[35]  J. García-Bellido,et al.  Large-N running of the spectral index of inflation , 2014, 1402.2059.

[36]  Andrei Linde Inflationary Cosmology after Planck 2013 , 2014, 1402.0526.

[37]  Andrei Linde,et al.  Superconformal inflationary α-attractors , 2013, 1311.0472.

[38]  D. Roest Universality classes of inflation , 2013, 1309.1285.

[39]  Andrei Linde,et al.  Minimal Supergravity Models of Inflation , 2013, 1307.7696.

[40]  S. Amerio,et al.  Study of B0(s)→K0Sh+h′− decays with first observation of B0s→K0SK±π∓ and B0s→K0Sπ+π− , 2013 .

[41]  Andrei Linde,et al.  Universality class in conformal inflation , 2013, 1306.5220.

[42]  Andrei Linde,et al.  Superconformal generalizations of the Starobinsky model , 2013, 1306.3214.

[43]  V. Mukhanov Quantum cosmological perturbations: predictions and observations , 2013, 1303.3925.

[44]  S. Ferrara,et al.  Conjecture on hidden superconformal symmetry of N = 4 supergravity , 2012, 1209.0418.

[45]  M. Shaposhnikov,et al.  The Standard Model Higgs boson as the inflaton , 2007, 0710.3755.

[46]  V. Balasubramanian,et al.  Systematics of moduli stabilisation in Calabi-Yau flux compactifications , 2005, hep-th/0502058.

[47]  Andrei Linde Creation of a compact topologically nontrivial inflationary universe , 2004, hep-th/0408164.

[48]  J. Maldacena,et al.  Towards inflation in string theory , 2003, Journal of Cosmology and Astroparticle Physics.

[49]  Andrei Linde,et al.  De Sitter vacua in string theory , 2003, hep-th/0301240.

[50]  T. Yanagida,et al.  Chaotic inflation in supergravity (素粒子物理学の新展開) , 2001 .

[51]  A. Liddle,et al.  Reconstructing the inflaton potential—an overview , 1995, astro-ph/9508078.

[52]  J. Bond,et al.  Designing density fluctuation spectra in inflation. , 1989, Physical review. D, Particles and fields.

[53]  E. Bergshoeff,et al.  Extended conformal supergravity , 1981 .

[54]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[55]  S. Ferrara,et al.  SU(4) Invariant Supergravity Theory , 1978 .

[56]  S. Ferrara,et al.  Seven-Disk Manifold, α-attractors and B-modes , 2016 .

[57]  M. Eshaghi,et al.  CMB and reheating constraints to $\alpha$-attractor inflationary models , 2016, 1602.07914.

[58]  Andrei Linde,et al.  Supercurvaton , 2011 .

[59]  M. D. Roo,et al.  Matter coupling in N = 4 supergravity , 1985 .

[60]  Andrei Linde,et al.  CHAOTIC INFLATION OF THE UNIVERSE IN SUPERGRAVITY , 1985 .