Precise prediction for the light MSSM Higgs-boson mass combining effective field theory and fixed-order calculations

In the Minimal Supersymmetric Standard Model heavy superparticles introduce large logarithms in the calculation of the lightest $$\mathscr {CP}$$CP-even Higgs-boson mass. These logarithmic contributions can be resummed using effective field theory techniques. For light superparticles, however, fixed-order calculations are expected to be more accurate. To gain a precise prediction also for intermediate mass scales, the two approaches have to be combined. Here, we report on an improvement of this method in various steps: the inclusion of electroweak contributions, of separate electroweakino and gluino thresholds, as well as resummation at the NNLL level. These improvements can lead to significant numerical effects. In most cases, the lightest $$\mathscr {CP}$$CP-even Higgs-boson mass is shifted downwards by about 1 GeV. This is mainly caused by higher-order corrections to the $${\overline{\text {MS}}}$$MS¯ top-quark mass. We also describe the implementation of the new contributions in the code FeynHiggs.

[1]  A. Hoang,et al.  Two-Loop Radiative Corrections to the Lightest Higgs Boson Mass in the Minimal Supersymmetric Model , 1994, hep-ph/9401219.

[2]  J. Rosiek,et al.  Complete on-shell renormalization scheme for the minimal supersymmetric Higgs sector , 1993 .

[3]  Haber,et al.  Renormalization-group-improved Higgs sector of the minimal supersymmetric model. , 1993, Physical review. D, Particles and fields.

[4]  A. Dabelstein The one-loop renormalization of the MSSM Higgs sector and its application to the neutral scalar Higgs masses , 1994, hep-ph/9409375.

[5]  J. Espinosa,et al.  The lightest Higgs boson mass in the Minimal Supersymmetric Standard Model , 1995 .

[6]  M. Carena,et al.  Effective potential methods and the Higgs mass spectrum in the MSSM , 1996 .

[7]  H. Haber,et al.  Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model , 1996, hep-ph/9609331.

[8]  Konstantin T. Matchev,et al.  Precision corrections in the minimal supersymmetric standard model , 1996, hep-ph/9606211.

[9]  Precise prediction for the mass of the lightest Higgs boson in the MSSM , 1998, hep-ph/9807423.

[10]  S. Heinemeyer,et al.  QCD corrections to the masses of the neutralCP-even Higgs bosons in the minimal supersymmetric standard model , 1998 .

[11]  S. Heinemeyer,et al.  QCD Corrections to the Masses of the neutral CP-even Higgs Bosons in the MSSM , 1998, hep-ph/9803277.

[12]  S. Heinemeyer,et al.  The masses of the neutral ${\cal CP}$-even Higgs bosons in the MSSM: Accurate analysis at the two-loop level , 1998, hep-ph/9812472.

[13]  S. Heinemeyer,et al.  The Mass of the Lightest MSSM Higgs Boson: A Compact Analytical Expression at the Two-Loop Level , 1999, hep-ph/9903404.

[14]  S. Heinemeyer,et al.  Constraints on tan beta in the MSSM from the Upper Bound on the Mass of the Lightest Higgs boson , 1999 .

[15]  Ren-jie Zhang Two loop effective potential calculation of the lightest CP even Higgs boson mass in the MSSM , 1998, hep-ph/9808299.

[16]  J. Espinosa,et al.  Lightest CP-Even Higgs Boson Mass to O ( α s α t ) : the Effective Potential Approach , 1999 .

[17]  J. Espinosa,et al.  MSSM Lightest CP-Even MSSM Higgs Boson Mass to O(alpha_s alpha_t): the Effective Potential Approach , 1999, hep-ph/9912236.

[18]  J. Espinosa,et al.  Complete Two-loop Dominant Corrections to the Mass of the Lightest CP-even Higgs Boson in the Minimal Supersymmetric Standard Model , 2000, hep-ph/0003246.

[19]  S. Heinemeyer,et al.  Reconciling the two loop diagrammatic and effective field theory computations of the mass of the lightest CP - even Higgs boson in the MSSM , 2000 .

[20]  S. Heinemeyer,et al.  FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM , 2000 .

[21]  Giuseppe Degrassi,et al.  On the neutral Higgs boson masses in the MSSM for arbitrary stop mixing , 2001, hep-ph/0105096.

[22]  P. Slavich,et al.  On the O(αt2) two-loop corrections to the neutral Higgs boson masses in the MSSM , 2001 .

[23]  P. Slavich,et al.  On the two-loop sbottom corrections to the neutral Higgs boson masses in the MSSM , 2002 .

[24]  S. Heinemeyer,et al.  Towards high-precision predictions for the MSSM Higgs sector , 2002, hep-ph/0212020.

[25]  Giuseppe Degrassi,et al.  On the two-loop Yukawa corrections to the MSSM Higgs boson masses at large tanβ , 2003 .

[26]  S. Heinemeyer,et al.  High-precision predictions for the MSSM Higgs sector at ${{\mathcal{O}}}(\alpha_b\alpha_s)$ , 2004, hep-ph/0411114.

[27]  S. Heinemeyer,et al.  High-Precision Predictions for the MSSM Higgs Sector at O(αbαs) , 2005 .

[28]  M. Binger Higgs boson mass in split supersymmetry at two-loops , 2004, hep-ph/0408240.

[29]  S. Heinemeyer,et al.  The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach , 2007 .

[30]  R. Harlander,et al.  Higgs boson mass in supersymmetry to three loops. , 2008, Physical review letters.

[31]  R. Harlander,et al.  Erratum: Higgs Boson Mass in Supersymmetry to Three Loops [Phys. Rev. Lett.100, 191602 (2008)] , 2008 .

[32]  H. Rzehak,et al.  FeynHiggs: A program for the calculation of MSSM Higgs-boson observables - Version 2.6.5 , 2009, Comput. Phys. Commun..

[33]  R. Harlander,et al.  Light MSSM Higgs boson mass to three-loop accuracy , 2010, 1005.5709.

[34]  M. Steinhauser,et al.  Gauge coupling beta functions in the standard model to three loops. , 2012, Physical review letters.

[35]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[36]  K. Chetyrkin,et al.  Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the standard model , 2012, 1205.2892.

[37]  M. Steinhauser,et al.  Renormalization constants and beta functions for the gauge couplings of the Standard Model to three-loop order , 2012, 1208.3357.

[38]  A. Strumia,et al.  Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements , 2011, 1108.6077.

[39]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[40]  K. Chetyrkin,et al.  β-function for the Higgs self-interaction in the Standard Model at three-loop level , 2013, 1311.5085.

[41]  A. Pikelner,et al.  Anomalous dimensions of gauge fields and gauge coupling beta-functions in the Standard Model at three loops , 2012, 1210.6873.

[42]  A. Pikelner,et al.  Yukawa coupling beta-functions in the Standard Model at three loops , 2012, 1212.6829.

[43]  Alessandro Strumia,et al.  Investigating the near-criticality of the Higgs boson , 2013, 1307.3536.

[44]  A. Pikelner,et al.  Higgs self-coupling beta-function in the Standard Model at three loops , 2013, 1303.4364.

[45]  Dominik Stöckinger,et al.  Renormalization of vacuum expectation values in spontaneously broken gauge theories , 2013, 1305.1548.

[46]  E. Bagnaschi,et al.  Higgs mass and unnatural supersymmetry , 2014, 1407.4081.

[47]  Jae Sik Lee,et al.  Dark matter in split SUSY with intermediate higgses , 2014, 1411.7329.

[48]  C. Wagner,et al.  Precise estimates of the Higgs mass in heavy supersymmetry , 2013, 1312.5743.

[49]  Dominik Stöckinger,et al.  Renormalization of vacuum expectation values in spontaneously broken gauge theories: two-loop results , 2013, Journal of High Energy Physics.

[50]  Florian Staub,et al.  SARAH 4: A tool for (not only SUSY) model builders , 2013, Comput. Phys. Commun..

[51]  S. Heinemeyer,et al.  High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model. , 2014, Physical review letters.

[52]  Javier Pardo Vega,et al.  Higgs mass determination in supersymmetry , 2015 .

[53]  Gabriel Lee,et al.  Higgs bosons in heavy supersymmetry with an intermediate m A , 2015, 1508.00576.

[54]  Javier Pardo Vega,et al.  SusyHD: Higgs mass Determination in Supersymmetry , 2015, 1504.05200.

[55]  M. P. Casado,et al.  Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to WW∗→eνμν with the ATLAS detector at s=8$$ \sqrt{s}=8 $$ TeV , 2016 .