Origins of recursive function theory

For over two millenia mathematicians have used particular examples of algorithms for determining the values of functions. The notion of "?-definability" was the first of what are now accepted as equivalent exact mathematical descriptions of the class of the functions for which algorithms exist. This article explains the notion and traces the investigation in 1931-1933 by which the notion was quite unexpectedly so accepted. The Herbrand-Gödel notion of "general recursiveness" in 1934 and the Turing notion of "computability" in 1936 were the second and third equivalent notions. Techniques developed in the study of ?-definability were applied in the analysis of general recursiveness and Turing compatibility.

[1]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[2]  Stephen Cole Kleene,et al.  The work of Kurt Gödel , 1976, Journal of Symbolic Logic.

[3]  A. Mostowski On definable sets of positive integers , 1947 .

[4]  A. Church,et al.  Some properties of conversion , 1936 .

[5]  Emil L. Post Formal Reductions of the General Combinatorial Decision Problem , 1943 .

[6]  A. Whitehead An Introduction to Mathematics , 1949, Nature.

[7]  A. Church The constructive second number class , 1938 .

[8]  S. C. Kleene,et al.  The Foundations of Intuitionistic Mathematics. , 1967 .

[9]  D. Hilbert Über das Unendliche , 1926 .

[10]  C. Spector On Degrees of Recursive Unsolvability , 1956 .

[11]  K. Gödel The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Haskell B. Curry Grundlagen der kombinatorischen Logik , 1930 .

[13]  W. Ackermann Zum Hilbertschen Aufbau der reellen Zahlen , 1928 .

[14]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[15]  N. M. Nagorny,et al.  The Theory of Algorithms , 1988 .

[16]  Stephen Cole Kleene,et al.  On the interpretation of intuitionistic number theory , 1945, Journal of Symbolic Logic.

[17]  Haskell B. Curry,et al.  Some Additions to the Theory of Combinators , 1932 .

[18]  Kurt Gödel,et al.  On undecidable propositions of formal mathematical systems , 1934 .

[19]  Alonzo Church,et al.  A note on the Entscheidungsproblem , 1936, Journal of Symbolic Logic.

[20]  Alonzo Church,et al.  Formal definitions in the theory of ordinal numbers , 1937 .

[21]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[22]  R. Smullyan Theory of formal systems , 1962 .

[23]  H. B. Curry The inconsistency of certain formal logics , 1942, Journal of Symbolic Logic.

[24]  Emil L. Post Finite combinatory processes—formulation , 1936, Journal of Symbolic Logic.

[25]  R. Dedekind Essays on the theory of numbers , 1963 .

[26]  R. Peter,et al.  Konstruktion nichtrekursiver Funktionen , 1935 .

[27]  Emil L. Post Recursively enumerable sets of positive integers and their decision problems , 1944 .

[28]  Clifford Spector,et al.  Recursive well-orderings , 1955, Journal of Symbolic Logic.

[29]  A. Turing,et al.  On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction , 1938 .

[30]  S. Kleene $\lambda$-definability and recursiveness , 1936 .

[31]  S. Kleene Proof by Cases in Formal Logic , 1934 .

[32]  J. Rosser A Mathematical Logic Without Variables. I , 1935 .

[33]  R. Peter,et al.  Über die mehrfache Rekursion , 1937 .

[34]  S. C. Kleene,et al.  Extension of an effectively generated class of functions by enumeration , 1958 .

[35]  Stephen Cole Kleene,et al.  On notation for ordinal numbers , 1938, Journal of Symbolic Logic.

[36]  B. Russell,et al.  Introduction to Mathematical Philosophy , 1920, The Mathematical Gazette.

[37]  A. Church A Set of Postulates for the Foundation of Logic , 1932 .

[38]  Paul Axt,et al.  On a subrecursive hierarchy and primitive recursive degrees , 1959 .

[39]  J. Rosser A mathematical logic without variables. II , 1935 .

[40]  S. Kleene On the Forms of the Predicates in the Theory of Constructive Ordinals (Second Paper) , 1955 .

[41]  David Nelson Recursive functions and intuitionistic number theory , 1947 .

[42]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[43]  S. Kleene Lambda-definable functionals of finite types , 1962 .

[44]  William W. Boone Decision Problems About Algebraic and Logical Systems as a Whole and Recursively Enumerable Degrees of Unsolvability , 1968 .

[45]  Andrzej Mostowski,et al.  On definable sets of positive integers , 1947 .

[46]  Paul Axt,et al.  Enumeration and the Grzegorczyk Hierarchy , 1963 .

[47]  Emil L. Post Recursive Unsolvability of a problem of Thue , 1947, Journal of Symbolic Logic.

[48]  R. Dedekind,et al.  Was sind und was sollen die Zahlen , 1961 .

[49]  S. Kleene A Theory of Positive Integers in Formal Logic. Part II , 1935 .

[50]  S. Kleene Arithmetical predicates and function quantifiers , 1955 .

[51]  S. Kleene General recursive functions of natural numbers , 1936 .

[52]  S. Kleene Realizability: A retrospective survey , 1973 .

[53]  J. Neumann The General and Logical Theory of Au-tomata , 1963 .

[54]  M. Schönfinkel Über die Bausteine der mathematischen Logik , 1924 .

[55]  H. B. Curry An Analysis of Logical Substitution , 1929 .

[56]  S. Kleene Hierarchies of number-theoretic predicates , 1955 .

[57]  Martin Davis,et al.  The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions , 2004 .

[58]  R. Peter,et al.  Über den Zusammenhang der verschiedenen Begriffe der rekursiven Funktion , 1935 .

[59]  S. Kleene On the Forms of the Predicates in the Theory of Constructive Ordinals , 1944 .

[60]  Yiannis N. Moschovakis,et al.  Elementary induction on abstract structures , 1974 .

[61]  S. C. Kleene,et al.  Recursive functionals and quantifiers of finite types. II , 1959 .

[62]  Alan M. Turing,et al.  Computability and λ-definability , 1937, Journal of Symbolic Logic.

[63]  S. Kleene Recursive predicates and quantifiers , 1943 .

[64]  S. Kleene,et al.  λ-Definability and Recursiveness. , 1937 .

[65]  Alan M. Turing,et al.  Systems of Logic Based on Ordinals , 2012, Alan Turing's Systems of Logic.

[66]  Emil L. Post,et al.  The Upper Semi-Lattice of Degrees of Recursive Unsolvability , 1954 .