Transformations for a generalized variable-coefficient Korteweg de Vries model from blood vessels, Bose Einstein condensates, rods and positons with symbolic computation

Abstract The variable-coefficient Korteweg–de Vries (KdV)-typed models, although often hard to be studied, are of current interest in describing various real situations. Under investigation hereby is a large class of the generalized variable-coefficient KdV models with external-force and perturbed/dissipative terms. Recent examples of this class include those in blood vessels and circulatory system, arterial dynamics, trapped Bose–Einstein condensates related to matter waves and nonlinear atom optics, Bose gas of impenetrable bosons with longitudinal confinement, rods of compressible hyperelastic material and semiconductor heterostructures with positonic phenomena. In this Letter, based on symbolic computation, four transformations are proposed from this class either to the cylindrical or standard KdV equation when the respective constraint holds. The constraints have nothing to do with the external-force term. Under those transformations, such analytic solutions as those with the Airy, Hermit and Jacobian elliptic functions can be obtained, including the solitonic profiles. The roles for the perturbed and external-force terms to play are observed and discussed. Investigations on this class can be performed through the properties of solutions of cylindrical and standard KdV equations.

[1]  Hilmi Demiray,et al.  The effect of a bump on wave propagation in a fluid-filled elastic tube , 2004 .

[2]  S. Burger,et al.  Dark solitons in Bose-Einstein condensates , 1999, QELS 2000.

[3]  A. Osborne,et al.  The inverse scattering transform: Tools for the nonlinear fourier analysis and filtering of ocean surface waves , 1995 .

[4]  Y. Hashizume Nonlinear Pressure Waves in a Fluid-Filled Elastic Tube , 1985 .

[5]  Hee Sook Hong,et al.  Korteweg-de Vries equation of ion acoustic surface waves , 1999 .

[6]  B. Tian,et al.  (2 + 1) dimensional Hărăgus-Courcelle-Il’ichev model for the liquid surface waves in the presence of sea ice or surface tension: Bäcklund transformation, exact solutions and possibly observable effects , 2004 .

[7]  K. Lonngren,et al.  Reflection of modified Korteweg–de Vries solitons in a negative ion plasma , 1996 .

[8]  A. Leggett,et al.  Bose-Einstein condensation in the alkali gases: Some fundamental concepts , 2001 .

[9]  Heng-Nong Xuan,et al.  Families of non-travelling wave solutions to a generalized variable coefficient two-dimensional KdV equation using symbolic computation , 2004 .

[10]  M. Zamir,et al.  The Physics of Pulsatile Flow , 2000, Biological Physics Series.

[11]  Ryogo Hirota,et al.  Exact solutions to the equation describing “cylindrical solitons” , 1979 .

[12]  Yingchao Xie Positonic solutions for Wick-type stochastic KdV equations☆ , 2004 .

[13]  Bo Tian,et al.  Cylindrical nebulons, symbolic computation and Bäcklund transformation for the cosmic dust acoustic waves , 2005 .

[14]  Gopal Das,et al.  A new mathematical approach for finding the solitary waves in dusty plasma , 1998 .

[15]  T. Moodie,et al.  Waves in nonlinear fluid filled tubes , 1984 .

[16]  Hongqing Zhang,et al.  Generalized Riccati equation expansion method and its application to the (3 + 1)-dimensional Jumbo-Miwa equation , 2004, Appl. Math. Comput..

[17]  R. Grimshaw,et al.  Generation of undular bores in the shelves of slowly-varying solitary waves. , 2002, Chaos.

[18]  Positon and positon-like solutions of the Korteweg-de Vries and Sine-Gordon equations , 1995 .

[19]  Gao Xiaoshan,et al.  Applications of Computer Algebra in Solving Nonlinear Evolution Equations , 2004 .

[20]  Bo Tian,et al.  Comment on ``Exact solutions of cylindrical and spherical dust ion acoustic waves'' [Phys. Plasmas 10, 4162 (2003)] , 2005 .

[21]  J. Faist,et al.  Observation of an electronic bound state above a potential well , 1992, Nature.

[22]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[23]  Sirendaoreji Exact solutions of the two-dimensional Burgers equation , 1999 .

[24]  B. Tian,et al.  Symbolic computation and observable effect for the (2 + 1)-dimensional symmetric regularized-long-wave equation from strongly magnetized cold-electron plasmas , 2003 .

[25]  Coffey Nonlinear dynamics of vortices in ultraclean type-II superconductors: Integrable wave equations in cylindrical geometry. , 1996, Physical review. B, Condensed matter.

[26]  D. Chudnovsky,et al.  Solution of the pulse width modulation problem using orthogonal polynomials and Korteweg-de Vries equations. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Shigeo Yomosa,et al.  Solitary Waves in Large Blood Vessels , 1987 .

[28]  R. Ibrahim Tanh-travelling wave solutions, truncated Painlevé expansion and reduction of Bullough–Dodd equation to a quadrature in magnetohydrodynamic equilibrium , 2003 .

[29]  Yong Chen,et al.  Generalized Extended Tanh-Function Method To Construct New Explicit Exact Solutions For The Approximate Equations For Long Water Waves , 2003 .

[30]  Bo Tian,et al.  Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation , 2005 .

[31]  Bo Tian,et al.  Transformations for a generalized variable-coefficient nonlinear Schrödinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation , 2005 .

[32]  B. Tian,et al.  Variable-coefficient balancing-act method and variable-coefficient KdV equation from fluid dynamics and plasma physics , 2001 .

[33]  R. Johnson On the development of a solitary wave moving over an uneven bottom , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[34]  Zachary Dutton,et al.  Observation of Quantum Shock Waves Created with Ultra- Compressed Slow Light Pulses in a Bose-Einstein Condensate , 2001, Science.

[35]  H. Dai,et al.  Solitary waves in an inhomogeneous rod composed of a general hyperelastic material , 2002 .

[36]  A. Stahlhofen Positons of the modified Korteweg de Vries equation , 1992 .

[37]  Efim Pelinovsky,et al.  A generalized Korteweg-de Vries model of internal tide transformation in the coastal zone , 1999 .

[38]  Bo Tian,et al.  Spherical nebulons and Bäcklund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation , 2005 .

[39]  B. Tian,et al.  A variable-coefficient unstable nonlinear Schrödinger model for the electron beam plasmas and Rayleigh–Taylor instability in nonuniform plasmas: Solutions and observable effects , 2003 .

[40]  C. E. Wieman,et al.  Vortices in a Bose Einstein condensate , 1999, QELS 2000.

[41]  P. Kevrekidis,et al.  Dynamics of Shallow Dark Solitons in a Trapped Gas of Impenetrable Bosons , 2004, cond-mat/0404102.

[42]  S. Dost,et al.  Wave propagation in fluid filled nonlinear viscoelastic tubes , 1992 .

[43]  I. Semenova,et al.  LONGITUDINAL-STRAIN SOLITON FOCUSING IN A NARROWING NONLINEARLY ELASTIC ROD , 1998 .

[44]  E. Hagley,et al.  Four-wave mixing with matter waves , 1999, Nature.

[45]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[46]  Bo Tian,et al.  On the solitonic structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation , 2005 .

[47]  Shanhua Zhu,et al.  Dynamics of dark solitons in quasi-one-dimensional Bose-Einstein condensates , 2002 .

[48]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[49]  B. Tian,et al.  Certain dark-solitonic features in optical fibres , 2003 .

[50]  J. Xue,et al.  Effects of the dust charge variation and non-thermal ions on multi-dimensional dust acoustic solitary structures in magnetized dusty plasmas , 2005 .

[51]  Alfio Quarteroni,et al.  Multiscale modelling of the circulatory system: a preliminary analysis , 1999 .

[52]  Timothy J. Pedley,et al.  The fluid mechanics of large blood vessels , 1980 .

[53]  V. Matveev,et al.  Positon-positon and soliton-positon collisions: KdV case , 1992 .

[54]  Shoufeng Shen,et al.  New exact solutions of the (2+1)-dimensional KdV equation with variable coefficients , 2005 .

[55]  Yong Chen,et al.  EXACT TRAVELING WAVE SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS WITH NONLINEAR TERMS OF ANY ORDER , 2003 .

[56]  Atom-laser dynamics , 2001, cond-mat/0103597.

[57]  A. Jeffrey,et al.  Nonlinear Waves in Solids , 1994 .

[58]  Gopal Das,et al.  Response to “Comment on ‘A new mathematical approach for finding the solitary waves in dusty plasma’ ” [Phys. Plasmas 6, 4392 (1999)] , 1999 .

[59]  N. Armesto,et al.  Nuclear structure functions and heavy flavour leptoproduction off the nucleus at small x in perturbative QCD , 2001, hep-ph/0107114.

[60]  H. Demiray Weakly nonlinear waves in a linearly tapered elastic tube filled with a fluid , 2004 .

[61]  Dalibard,et al.  Vortex formation in a stirred bose-einstein condensate , 1999, Physical review letters.

[62]  Z. Horii Formulation of the Korteweg–de Vries and the Burgers equations expressing mass transports from the generalized Kawasaki–Ohta equation , 2002 .

[63]  Fluid flow in tubes with elastic walls , 1995 .

[64]  H. Demiray,et al.  Weakly non-linear waves in a tapered elastic tube filled with an inviscid fluid , 2005 .

[65]  B. Tian,et al.  POSITONIC SOLUTIONS OF A VARIABLE-COEFFICIENT KdV EQUATION IN FLUID DYNAMICS AND PLASMA PHYSICS , 2001 .

[66]  Bo Tian,et al.  Solutions of a variable-coefficient Kadomtsev-Petviashvili equation via computer algebra , 1997 .

[67]  H. Dai,et al.  Nonlinear axisymmetric waves in compressible hyperelastic rods: long finite amplitude waves , 1993 .

[68]  V. Matveev,et al.  Generalized Wronskian formula for solutions of the KdV equations: first applications , 1992 .

[69]  M. Rader,et al.  A computer model , 1996, IEEE Conference Record - Abstracts. 1996 IEEE International Conference on Plasma Science.

[70]  Bo Tian,et al.  Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers [rapid communication] , 2005 .

[71]  Zhenya Yan,et al.  Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces , 2001 .

[72]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[73]  Z. Horii A chemical response theory of the Toda lattice in an external mechanical perturbation , 2004 .

[74]  Alfio Quarteroni,et al.  Computational vascular fluid dynamics: problems, models and methods , 2000 .

[75]  P. Holloway,et al.  A Nonlinear Model of Internal Tide Transformation on the Australian North West Shelf , 1997 .

[76]  Phillips,et al.  Generating solitons by phase engineering of a bose-einstein condensate , 2000, Science.

[77]  W. Ketterle,et al.  Observation of Vortex Lattices in Bose-Einstein Condensates , 2001, Science.

[78]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[79]  A. Galindo,et al.  On non-autonomous KdV-flows , 1985 .

[80]  Wu,et al.  Nonlinear effects in interference of bose-einstein condensates , 2000, Physical review letters.

[81]  A. Rachev Effects of transmural pressure and muscular activity on pulse waves in arteries. , 1980, Journal of biomechanical engineering.

[82]  J. Draayer,et al.  Nonlinear Modes of Liquid Drops as Solitary Waves , 1998, physics/0003076.

[83]  Christopher Jones,et al.  AVERAGE DYNAMICS OF THE OPTICAL SOLITON IN COMMUNICATION LINES WITH DISPERSION MANAGEMENT : ANALYTICAL RESULTS , 1998 .

[84]  L. Reatto,et al.  WHAT IS A ROTON , 1999 .

[85]  Solitary waves on nonlinear elastic rods. I , 1984 .

[86]  M. P. Barnett,et al.  Symbolic calculation in chemistry: Selected examples , 2004 .

[87]  Seoung-Hwan Park,et al.  EXTENDED TANH-METHODS AND SOLITONIC SOLUTIONS OF THE GENERAL SHALLOW WATER WAVE MODELS , 2004 .

[88]  Bo Tian,et al.  Cylindrical Kadomtsev–Petviashvili model, nebulons and symbolic computation for cosmic dust ion-acoustic waves , 2006 .

[90]  Solitary longitudinal waves in an inhomogeneous non-linearly elastic rod☆ , 1987 .