Femtosecond laser-pumped source of entangled photons for quantum cryptography applications

We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulsewidth, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The output infrared pump photons (λ = 810 nm) are first up-converted to blue light (λ = 405 nm) and, subsequently, down-converted in a 1.5-mm-thick, type-II BBO crystal via spontaneous down-conversion. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. The total down-conversion efficiency of our system, corresponding criterion of the pump power for real entangled coincident events, has been calculated to be 0.86 × 10-9. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.

[1]  Pavel Trojek,et al.  Compact source of polarization-entangled photon pairs. , 2004, Optics express.

[2]  Anton Zeilinger,et al.  Quantum Entangled Bits Step Closer to IT , 2000, Science.

[3]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[4]  N. Lütkenhaus Security against individual attacks for realistic quantum key distribution , 2000 .

[5]  James F. Dynes,et al.  Unconditionally secure one-way quantum key distribution using decoy pulses , 2007, QELS 2007.

[6]  O. Okunev,et al.  Fiber-coupled single-photon detectors based on NbN superconducting nanostructures for practical quantum cryptography and photon-correlation studies , 2006 .

[7]  Christopher Edward Kuklewicz,et al.  Ultrabright source of polarization-entangled photons from cavity-enhanced downconversion , 2005 .

[8]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[9]  I. Milostnaya,et al.  Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications , 2007 .

[10]  Weinfurter,et al.  Quantum cryptography with entangled photons , 1999, Physical review letters.

[11]  Akihisa Tomita,et al.  Generation of a pulsed polarization entangled-photon pair via a two-crystal geometry , 2003 .

[12]  K. Smirnov,et al.  Gigahertz counting rates of NbN single-photon detectors for quantum communications , 2005, IEEE Transactions on Applied Superconductivity.

[13]  Alan Mink,et al.  Quantum key distribution with 1.25 Gbps clock synchronization , 2004 .

[14]  P. Kouminov,et al.  Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors , 2004 .

[15]  Norbert Lutkenhaus,et al.  Estimates for practical quantum cryptography , 1998 .

[16]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[17]  J. Goodman Introduction to Fourier optics , 1969 .

[18]  P. Grangier,et al.  Experimental open-air quantum key distribution with a single-photon source , 2004, quant-ph/0402110.

[19]  N. Gisin,et al.  Highly efficient photon-pair source using periodically poled lithium niobate waveguide , 2000 .

[20]  Yanhua Shih,et al.  Entangled biphoton source - property and preparation , 2003 .

[21]  O. Okunev,et al.  Picosecond superconducting single-photon optical detector , 2001 .

[22]  Bahaa E. A. Saleh,et al.  Quantum cryptography using femtosecond-pulsed parametric down-conversion , 1999 .

[23]  Akihisa Tomita,et al.  Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer , 2004 .

[24]  Marco Barbieri,et al.  Polarization-momentum hyperentangled states : Realization and characterization , 2005 .

[25]  I. Walmsley,et al.  Spectral information and distinguishability in type-II down-conversion with a broadband pump , 1997 .

[26]  M. Bourennane,et al.  Compact source of polarization-entangled photon pairs , 2003, 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665).

[27]  H. Inamori,et al.  Unconditional security of practical quantum key distribution , 2007 .

[28]  A. Zeilinger,et al.  Practical quantum key distribution with polarization entangled photons , 2005 .