Salt Additives for Improving Cyclability of Polymer-Based All-Solid-State Lithium–Sulfur Batteries

Lithium–sulfur batteries are attracting extensive attention for energy storage owing to their high theoretical energy density. However, their practical implementation is hindered because of inheren...

[1]  G. G. Eshetu,et al.  Designer Anion Enabling Solid-State Lithium-Sulfur Batteries , 2019, Joule.

[2]  G. G. Eshetu,et al.  Fluorine‐Free Noble Salt Anion for High‐Performance All‐Solid‐State Lithium–Sulfur Batteries , 2019, Advanced Energy Materials.

[3]  L. M. Rodriguez-Martinez,et al.  Ultrahigh Performance All Solid-State Lithium Sulfur Batteries: Salt Anion's Chemistry-Induced Anomalous Synergistic Effect. , 2018, Journal of the American Chemical Society.

[4]  Jinghua Guo,et al.  The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries , 2018 .

[5]  Kang Xu,et al.  Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries , 2018 .

[6]  C. Bauschlicher,et al.  Decomposition of Ionic Liquids at Lithium Interfaces. 1. Ab Initio Molecular Dynamics Simulations , 2017 .

[7]  L. M. Rodriguez-Martinez,et al.  Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries. , 2017, Angewandte Chemie.

[8]  L. M. Rodriguez-Martinez,et al.  Stable cycling of lithium metal electrode in nanocomposite solid polymer electrolytes with lithium bis(fluorosulfonyl)imide , 2017 .

[9]  Ashleigh M. Schwarz,et al.  In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries , 2017 .

[10]  L. M. Rodriguez-Martinez,et al.  Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li-S Cell. , 2017, The journal of physical chemistry letters.

[11]  Xingguo Qi,et al.  Novel Li[(CF3SO2)(n-C4F9SO2)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance. , 2016, ACS applied materials & interfaces.

[12]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[13]  M. Verbrugge,et al.  Synergetic Effects of Inorganic Components in Solid Electrolyte Interphase on High Cycle Efficiency of Lithium Ion Batteries. , 2016, Nano letters.

[14]  O. Borodin,et al.  In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSI‐Based Organic Electrolytes , 2015 .

[15]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[16]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[17]  C. Wolverton,et al.  Lithium Transport in Amorphous Al2O3 and AlF3 for Discovery of Battery Coatings , 2013 .

[18]  Min-Kyu Song,et al.  Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. , 2013, Nanoscale.

[19]  John B. Goodenough,et al.  Challenges for rechargeable batteries , 2011 .

[20]  E. Quartarone,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[21]  Wenfang Feng,et al.  Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for l , 2011 .

[22]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[23]  M. Armand,et al.  Building better batteries , 2008, Nature.

[24]  A. Łasińska,et al.  Crystallization and melting of PEO:LiTFSI polymer electrolytes investigated simultaneously by impedance spectroscopy and polarizing microscopy , 2005 .

[25]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[26]  M. Armand,et al.  Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes , 1995 .