Polarization selective symmetry breaking in the near-fields of vertical cavity surface emitting lasers

We study symmetries in multi-transverse-mode near-fields of circular vertical cavity surface emitting lasers (VCSELs). The 0 ◦ polarized component of the near-field always has circular or high-order rotational symmetry, indicating that all significant optical properties of the laser are isotropic for light of that polarization. In contrast, the simultaneously present 90 ◦ polarized part of the same near-field is always symmetrical only upon reflection. This is evidenced by sequences of near-field images of increasing complexity for increasing pump current. The presence of a preferred direction of the symmetry axis is evidence for a symmetry-breaking anisotropy. We attribute this anisotropy to birefringence, which is induced into any electrically pumped VCSEL by the applied vertical electrical field via the linear electro-optic effect. Thus, the optical index becomes a function of the transverse component of the k-vector of light inside the cavity, which corresponds to an angular dependent index. As the functional dependence on the emission angle is of different strength for orthogonal polarizations, the circular symmetry of the laser is broken only for 90 ◦ polarized light, while the effect on the 0 ◦ polarization is too small to affect the near-field. The highly symmetrical near-field of the unaffected polarization shows remarkable similarities to another physical system of circular symmetry, the static patterns in cellular flames. Our analysis of the symmetry properties of the near-fields has implications for the design of VCSELs as well as for future modelling activities.

[1]  L. Lugiato Transverse nonlinear optics: Introduction and review , 1994 .

[2]  J. P. Harbison,et al.  Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers , 1991 .

[3]  Tomas Bohr,et al.  Cover Illustration: Polygonal hydraulic jumps , 1999 .

[4]  B.E. Lemoff,et al.  The ideal light source for datanets , 1998, IEEE Spectrum.

[5]  Robert P. Sarzała,et al.  Transverse modes in gain-guided vertical-cavity surface-emitting lasers , 1998 .

[6]  J. P. Woerdman,et al.  Elasto‐optic anisotropy and polarization orientation of vertical‐cavity surface‐emitting semiconductor lasers , 1996 .

[7]  Ingo Fischer,et al.  Thermally induced local gain suppression in vertical-cavity surface-emitting lasers , 2000 .

[8]  Connie J. Chang-Hasnain,et al.  Polarization control of vertical-cavity surface-emitting lasers by electro-optic birefringence , 2000 .

[9]  D. M. Kuchta,et al.  Spatial hole burning and self‐focusing in vertical‐cavity surface‐emitting laser diodes , 1994 .

[10]  Daryoosh Vakhshoori,et al.  Top‐surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies , 1993 .

[11]  Gil,et al.  Spatiotemporal dynamics of lasers in the presence of an imperfect O(2) symmetry. , 1992, Physical review letters.

[12]  Robert A. Morgan,et al.  Transverse modes and patterns of electrically pumped vertical-cavity surface-emitting semiconductor lasers , 1994 .

[13]  Seock-Joon Kim,et al.  A Visual Study of the Structure of Turbulent Nonpremixed Flames Near Jet Exit , 1994 .

[14]  John G. McInerney,et al.  Transverse-mode control of vertical-cavity surface-emitting lasers , 1996 .

[15]  O. Hess,et al.  Quantum noise and polarization fluctuations in vertical-cavity surface-emitting lasers , 1997, quant-ph/9703034.

[16]  Rainer Michalzik,et al.  4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes , 1997 .

[17]  Karl Joachim Ebeling,et al.  Spectrally resolved near‐field mode imaging of vertical cavity semiconductor lasers , 1996 .

[18]  J. P. Woerdman,et al.  Pinning of daisy modes in optically pumped vertical-cavity surface-emitting lasers , 1998 .

[19]  J. P. Woerdman,et al.  Polarization fluctuations in vertical-cavity semiconductor lasers , 1998 .

[20]  San Miguel M,et al.  Light-polarization dynamics in surface-emitting semiconductor lasers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[21]  Hans W. Lehmann,et al.  Mode behavior and high resolution spectra of circularly‐symmetric GaAs‐AlGaAs air‐post vertical cavity surface emitting lasers , 1996 .

[22]  J. P. Woerdman,et al.  ELECTRO-OPTIC EFFECT AND BIREFRINGENCE IN SEMICONDUCTOR VERTICAL-CAVITY LASERS , 1997 .

[23]  Karl Joachim Ebeling,et al.  Amplitude noise squeezed light from polarisation singlemode VCSEL , 1998 .

[24]  M. S. Miguel,et al.  Polarization switching in quantum-well vertical-cavity surface-emitting lasers. , 1996, Optics letters.

[25]  IEEE Spectrum , 2022 .

[26]  J. P. Woerdman,et al.  Tailoring the birefringence in a vertical‐cavity semiconductor laser , 1996 .

[27]  M. El-Hamdi,et al.  Experimental Observation of Ordered States of Cellular Flames , 1994 .

[28]  T. Bohr,et al.  Creating corners in kitchen sinks , 1998, Nature.

[29]  M. Adams,et al.  Optical waves in crystals , 1984, IEEE Journal of Quantum Electronics.

[30]  Amnon Yariv,et al.  Optical Waves in Crystals , 1984 .

[31]  K. Staliunas,et al.  Solitons and vortices in lasers , 1999 .

[32]  Ingo Fischer,et al.  Transverse modes in oxide confined VCSELs: Influence of pump profile, spatial hole burning, and thermal effects. , 1999, Optics express.

[33]  G. Mindlin,et al.  Spontaneous symmetry breaking in a laser: The experimental side. , 1990, Physical Review Letters.

[34]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[35]  J. P. Woerdman,et al.  Electro-optic birefringence in semiconductor vertical-cavity lasers , 1997 .

[36]  Alexander E. Kaplan,et al.  Optical physics (A) , 1986 .