Bisimulation for Labelled Markov Processes

In this paper we introduce a new class of labelled transition systems-Labelled Markov Processes-and define bisimulation for them. Labelled Markov processes are probabilistic labelled transition systems where the state space is not necessarily discrete, it could be the reals, for example. We assume that it is a Polish space (the underlying topological space for a complete separable metric space). The mathematical theory of such systems is completely new from the point of view of the extant literature on probabilistic process algebra; of course, it uses classical ideas from measure theory and Markov process theory. The notion of bisimulation builds on the ideas of Larsen and Skou and of Joyal, Nielsen and Winskel. The main result that we prove is that a notion of bisimulation for Markov processes on Polish spaces, which extends the Larsen-Skou definition for discrete systems, is indeed an equivalence relation. This turns our to be a rather hard mathematical result which, as far as we know, embodies a new result in pure probability theory. This work heavily uses continuous mathematics which is becoming an important part of work on hybrid systems.

[1]  Rajeev Alur,et al.  Model-Checking of Real-Time Systems: A Telecommunications Application Experience Report , 1997, Proceedings of the (19th) International Conference on Software Engineering.

[2]  Christel Baier,et al.  Domain equations for probabilistic processes , 2000, Mathematical Structures in Computer Science.

[3]  M. de Rijke,et al.  Modal Logic and Process Algebra: A Bisimulation Perspective , 1996 .

[4]  Simon L. Peyton Jones,et al.  Imperative functional programming , 1993, POPL '93.

[5]  W. Arveson An Invitation To C*-Algebras , 1976 .

[6]  O. Gaans Probability measures on metric spaces , 2022 .

[7]  Albert Benveniste,et al.  A Calculus of Stochastic Systems for the Specification, Simulation, and Hidden State Estimation of Mixed Stochastic/Nonstochastic Systems , 1994, Theor. Comput. Sci..

[8]  Scott A. Smolka,et al.  Equivalences, Congruences, and Complete Axiomatizations for Probabilistic Processes , 1990, CONCUR.

[9]  Michael Huth,et al.  Probabilistic model checking , 2015 .

[10]  H. D. Miller,et al.  The Theory Of Stochastic Processes , 1977, The Mathematical Gazette.

[11]  Roberto Gorrieri,et al.  Proceedings of ICALP'97 , 1997 .

[12]  Dexter Kozen,et al.  Semantics of probabilistic programs , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[13]  Peter Aczel,et al.  A Final Coalgebra Theorem , 1989, Category Theory and Computer Science.

[14]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic systems , 1990 .

[15]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[16]  Glynn Winskel,et al.  Bisimulation from Open Maps , 1994, Inf. Comput..

[17]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[18]  N. Saheb-Djahromi,et al.  Probabilistic LCF , 1978, International Symposium on Mathematical Foundations of Computer Science.

[19]  T. O’Neil Geometric Measure Theory , 2002 .

[20]  André Arnold,et al.  Finite transition systems , 1994 .

[21]  도경구,et al.  Partial Evaluation , 1998, Lecture Notes in Computer Science.

[22]  Alex K. Simpson,et al.  Compositionality via cut-elimination: Hennessy-Milner logic for an arbitrary GSOS , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[23]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[24]  Bernhard Steffen,et al.  Reactive, Generative and Stratified Models of Probabilistic Processes , 1995, Inf. Comput..

[25]  Paul Pettersson,et al.  Tools and Algorithms for the Construction and Analysis of Systems: 28th International Conference, TACAS 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2–7, 2022, Proceedings, Part II , 1998, TACAS.

[26]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[27]  Samson Abramsky,et al.  Handbook of logic in computer science. , 1992 .

[28]  N. Saheb-Djahromi,et al.  CPO'S of Measures for Nondeterminism , 1980, Theor. Comput. Sci..

[29]  Ivan Christoff,et al.  Testing Equivalences and Fully Abstract Models for Probabilistic Processes , 1990, CONCUR.

[30]  Ieke Moerdijk,et al.  A definability theorem for first order logic , 1997 .

[31]  Rance Cleaveland,et al.  On Automatically Explaining Bisimulation Inequivalence , 1990, CAV.

[32]  Olivier Danvy,et al.  Partial Evaluation of the Euclidian Algorithm (extended version) , 1997 .

[33]  Mogens Nielsen,et al.  Models for Concurrency , 1992 .

[34]  Wang Yi,et al.  Compositional testing preorders for probabilistic processes , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[35]  Dexter Kozen,et al.  A probabilistic PDL , 1983, J. Comput. Syst. Sci..

[36]  Mogens Nielsen,et al.  Open Maps (at) Work , 1995 .

[37]  Rance Cleaveland,et al.  Testing Preorders for Probabilistic Processes , 1992, Inf. Comput..

[38]  Sergei Soloviev,et al.  Proof of a Conjecture of S. Mac Lane , 1996, Ann. Pure Appl. Log..

[39]  Abbas Edalat,et al.  A logical characterization of bisimulation for labeled Markov processes , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[40]  Paul Embrechts,et al.  Introduction to measure and probability , 1967 .

[41]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[42]  Thomas A. Henzinger,et al.  Hybrid Systems III , 1995, Lecture Notes in Computer Science.

[43]  K. Parthasarathy PROBABILITY MEASURES IN A METRIC SPACE , 1967 .

[44]  J. Rutten A calculus of transition systems (towards universal coalgebra) , 1995 .

[45]  Joseph Sifakis,et al.  Use of Petri nets for performance evaluation , 1977, Acta Cybern..

[46]  Erik P. de Vink,et al.  Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach , 1997, Theor. Comput. Sci..

[47]  David A. Schmidt Abstract Interpretation in the Operational Semantics Hierarchy , 1997 .

[48]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[49]  Panos J. Antsaklis,et al.  Hybrid Systems IV , 1997, Lecture Notes in Computer Science.

[50]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[51]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[52]  Tiziana Margaria,et al.  Tools and algorithms for the construction and analysis of systems: a special issue for TACAS 2017 , 2001, International Journal on Software Tools for Technology Transfer.

[53]  Sally Popkorn First Steps in Modal Logic , 1995 .

[54]  Wang Yi,et al.  UPPAAL - a Tool Suite for Automatic Verification of Real-Time Systems , 1996, Hybrid Systems.

[55]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[56]  Thomas A. Henzinger,et al.  HYTECH: the next generation , 1995, Proceedings 16th IEEE Real-Time Systems Symposium.

[57]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[58]  Bernhard Steffen,et al.  Reactive, generative, and stratified models of probabilistic processes , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[59]  Andrew M. Pitts,et al.  Category Theory and Computer Science , 1987, Lecture Notes in Computer Science.

[60]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[61]  B. Banaschewski,et al.  Categorical Aspects of Topology and Analysis , 1982 .

[62]  Servicio Geológico Colombiano Sgc Volume 4 , 2013, Journal of Diabetes Investigation.

[63]  Kim Guldstrand Larsen,et al.  Specification and refinement of probabilistic processes , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[64]  R. Lathe Phd by thesis , 1988, Nature.

[65]  Igor Walukiewicz,et al.  An expressively complete linear time temporal logic for Mazurkiewicz traces , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[66]  Thomas A. Henzinger,et al.  HYTECH: A Model Checker for Hybrid Systems , 1997, CAV.

[67]  Wang Yi,et al.  Compositional and symbolic model-checking of real-time systems , 1995, Proceedings 16th IEEE Real-Time Systems Symposium.

[68]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..