Nucleosome loss activates yeast downstream promoters in vivo

[1]  M. Grunstein,et al.  Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast , 1988, Cell.

[2]  P. Sharp,et al.  Function of a yeast TATA element-binding protein in a mammalian transcription system , 1988, Nature.

[3]  P. Chambon,et al.  The human oestrogen receptor functions in yeast , 1988, Nature.

[4]  M. Grunstein,et al.  Effects of histone H4 depletion on the cell cycle and transcription of Saccharomyces cerevisiae. , 1988, The EMBO journal.

[5]  M. Grunstein,et al.  Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae. , 1988, The EMBO journal.

[6]  Kevin Struhl,et al.  Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein , 1988, Nature.

[7]  L. Guarente UASs and enhancers: Common mechanism of transcriptional activation in yeast and mammals , 1988, Cell.

[8]  F. Winston,et al.  Changes in histone gene dosage alter transcription in yeast. , 1988, Genes & development.

[9]  J. Workman,et al.  Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II , 1987, Cell.

[10]  Mark Ptashne,et al.  Mutants of GAL4 protein altered in an activation function , 1987, Cell.

[11]  R. Kornberg,et al.  Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones , 1987, Cell.

[12]  Jun Ma,et al.  Deletion analysis of GAL4 defines two transcriptional activating segments , 1987, Cell.

[13]  C. Chang,et al.  Production of hepatitis B virus in vitro by transient expression of cloned HBV DNA in a hepatoma cell line. , 1987, The EMBO journal.

[14]  A. Hinnen,et al.  The yeast PHO5 promoter: phosphate-control elements and sequences mediating mRNA start-site selection. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Grunstein,et al.  Histone H2B repression causes cell-cycle-specific arrest in yeast: Effects on chromosomal segregation, replication, and transcription , 1987, Cell.

[16]  A. Hinnen,et al.  Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. , 1986, The EMBO journal.

[17]  W Hörz,et al.  Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. , 1986, The EMBO journal.

[18]  K. Struhl,et al.  Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of Yeast , 1986, Cell.

[19]  A. Toh-E,et al.  Saccharomyces cerevisiae PHO5 promoter region: location and function of the upstream activation site , 1986, Molecular and cellular biology.

[20]  S. Emr,et al.  The amino terminus of the yeast F1-ATPase beta-subunit precursor functions as a mitochondrial import signal , 1986, The Journal of cell biology.

[21]  K. Bostian,et al.  Isolation of the positive-acting regulatory gene PHO4 from Saccharomyces cerevisiae. , 1986, Gene.

[22]  K. Struhl,et al.  Constitutive and coordinately regulated transcription of yeast genes: promoter elements, positive and negative regulatory sites, and DNA binding proteins. , 1986, Cold Spring Harbor symposia on quantitative biology.

[23]  R. Brent,et al.  A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor , 1985, Cell.

[24]  D. Lohr Organization of the GAL1-GAL10 intergenic control region chromatin. , 1984, Nucleic acids research.

[25]  M. Ptashne,et al.  Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG , 1984, Molecular and cellular biology.

[26]  A. Klug,et al.  Structure of the nucleosome core particle at 7 Å resolution , 1984, Nature.

[27]  M. Ptashne,et al.  Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae , 1984, Molecular and cellular biology.

[28]  M. Schlissel,et al.  The transcriptional regulation of Xenopus 5S RNA genes in chromatin: The roles of active stable transcription complexes and histone H1 , 1984, Cell.

[29]  Michael R. Green,et al.  Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro , 1984, Cell.

[30]  L. Guarente,et al.  Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae , 1984, Cell.

[31]  K. Matsumoto,et al.  [Regulatory circuits for gene expression: the metabolism of galactose and phosphate in Saccharomyces cerevisiae]. , 1984, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[32]  L. Guarente,et al.  Heme regulates transcription of the CYC1 gene of S. cerevisiae via an upstream activation site , 1983, Cell.

[33]  H. Weintraub,et al.  Transcription of DNA injected into Xenopus oocytes is influenced by template topology , 1983, Nature.

[34]  K. Struhl Promoter elements, regulatory elements, and chromatin structure of the yeast his3 gene. , 1983, Cold Spring Harbor symposia on quantitative biology.

[35]  L. Hartwell,et al.  A dependent pathway of gene functions leading to chromosome segregation in Saccharomyces cerevisiae , 1982, The Journal of cell biology.

[36]  R. W. Davis,et al.  The organization and transcription of the galactose gene cluster of Saccharomyces. , 1981, Journal of molecular biology.

[37]  R. W. Davis,et al.  High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[38]  G. Fink,et al.  Methods in yeast genetics , 1979 .

[39]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[40]  F. Sherman,et al.  Genetics and biosynthesis of cytochrome c. , 1971, Annual review of genetics.