Methods for forecasting performance limits of fusion reactor structural materials

Abstract For the purposes of both developing appropriate alloys for fusion reactors and ultimately designing and building such devices, it is necessary to determine the mechanical response to high energy neutron irradiation of candidate structural materials. The current and near-term facilities for providing the requisite testing environment are either limited by dissimilarity to fusion reactor environments (i.e., fission reactors), or irradiation volume, or both. This necessitates the development of both a testing technology commensurate with the available facilities — i.e., primarily small specimen technology — and a correlation methodology which recognizes the limitations of the anticipated data base and maximizes the use of that data. In this paper we (1) describe a general philosophy for such correlation methodologies, (2) provide a brief overview of small specimen test techniques and data characteristics, and (3) demonstrate with several examples how correlations can be developed and applied.

[1]  Subra Suresh,et al.  Some considerations on fatigue crack closure at near-threshold stress intensities due to fracture surface morphology , 1982 .

[2]  Ken C. Liu,et al.  High-temperature fatigue life of type 316 stainless steel containing irradiation induced helium , 1981 .

[3]  Robert M. McMeeking,et al.  Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture , 1977 .

[4]  G. Odette,et al.  The mumechanical mechanisms of cleavage fracture in martensitic stainless steels , 1984 .

[5]  M. E. Haddad,et al.  Fatigue Crack Propagation of Short Cracks , 1979 .

[6]  P. Chomel,et al.  Adoucissement du fer par le carbone en solution solide , 1977 .

[7]  D. Curry Influence of hydrostatic tension on cleavage fracture of bainitic pressure vessel steel , 1982 .

[8]  G. L. Wire,et al.  Fracture toughness testing on ferritic alloys using the electropotential technique , 1981 .

[9]  G. Odette,et al.  Development of mechanical property correlation methodology for fusion environments , 1979 .

[10]  Russel H. Jones,et al.  Flow and fracture of alloys in the fusion environment , 1981 .

[11]  David R. Owen,et al.  An elastic-plastic stress analysis for a notched bar in plane strain bending , 1971 .

[12]  B. Chin,et al.  An in situ fatigue crack propagation experiment , 1981 .

[13]  M. L. Hamilton,et al.  The microstructural origins of yield strength changes in aisi 316 during fission or fusion irradiation , 1981 .

[14]  A. Mascanzoni,et al.  Microstructure and cleavage resistance of low-carbon bainitic steels , 1977 .

[15]  R. Forman,et al.  Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures , 1967 .

[16]  G. Odette,et al.  Shear Punch and Microhardness Tests for Strength and Ductility Measurements , 1986 .

[17]  Michael F. Ashby,et al.  Overview No. 3 Fracture-mechanism maps and their construction for f.c.c. metals and alloys , 1979 .

[18]  C.H.A. Townley,et al.  The effect of defects on structural failure: A two-criteria approach , 1975 .

[19]  D. Curry Cleavage micromechanisms of crack extension in steels , 1980 .

[20]  R. Jones,et al.  Strength changes in vanadium and titanium irradiated with 14 MeV neutrons , 1981 .

[21]  D. Curry Comparison between two models of cleavage fracture , 1980 .

[22]  A. J. McEvily,et al.  Fracture of Structural Materials , 1967 .

[23]  G. Odette,et al.  Fission-fusion correlations for swelling and microstructure in stainless steels: Effect of the helium to displacement per atom ratio , 1981 .

[24]  M. L. Hamilton,et al.  Bend testing for miniature disks , 1982 .

[25]  F. Froes,et al.  Interrelations between fracture toughness and other mechanical properties in titanium alloys , 1977 .

[26]  John R. Rice,et al.  ON THE RELATIONSHIP BETWEEN CRITICAL TENSILE STRESS AND FRACTURE TOUGHNESS IN MILD STEEL , 1973 .

[27]  G. E. Lucas,et al.  The development of small specimen mechanical test techniques , 1983 .

[28]  Kazuo Furuya,et al.  Deformation behavior of neutron irradiated molybdenum in tensile and hardness tests , 1981 .

[29]  Otto K. Harling,et al.  The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties , 1981 .

[30]  G. Odette,et al.  Analysis of cleavage fracture potential of martensitic stainless steel fusion structures. Part I. Micromechanical models and material properties , 1983 .

[31]  D. G. Morris Creep failure in Type 316 austenitic steel , 1978 .

[32]  R. E. Bauer,et al.  Miniaturized fatigue crack growth specimen technology and results , 1981 .

[33]  G. Chell Simple formula for obtaining fracture toughness from invalid specimen data , 1977 .

[34]  J. F. Knott,et al.  Effect of microstructure on cleavage fracture toughness of quenched and tempered steels , 1979 .

[35]  G. Odette A model for in-reactor stress rupture of austenitic stainless steels , 1984 .

[36]  David Taylor,et al.  FATIGUE CRACK PROPAGATION BEHAVIOUR OF SHORT CRACKS; THE EFFECT OF MICROSTRUCTURE , 1981 .

[37]  A. Pineau,et al.  A local criterion for cleavage fracture of a nuclear pressure vessel steel , 1983 .

[38]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[39]  G. E. Lucas,et al.  The determination of flow distribution by analysis of indentation geometry , 1984 .

[40]  E. K. Opperman,et al.  Miniature specimen tensile data for high energy neutron source experiments , 1981 .

[41]  B. Chin,et al.  In-reactor creep rupture of 20% cold-worked AISI 316 stainless steel , 1981 .

[42]  D. Mosedale,et al.  The effects of temperature and dose-rate variations on the creep of austenitic stainless steels in the dounreay fast reactor , 1980 .

[43]  H. Trinkaus On the modeling of the high-temperature embrittlement of metals containing helium , 1983 .

[44]  D. Harries Neutron irradiation-induced embrittlement in type 316 and other austenitic steels and alloys , 1979 .