Algorithmic correspondence and canonicity for possibility semantics
暂无分享,去创建一个
[1] Kentarô Yamamoto,et al. Results in modal correspondence theory for possibility semantics , 2017, J. Log. Comput..
[2] Kentarô Yamamoto. Modal Correspondence Theory for Possibility Semantics , 2018 .
[3] Willem Conradie,et al. Sahlqvist via Translation , 2016, Log. Methods Comput. Sci..
[4] Alessandra Palmigiano,et al. Unified Correspondence as a Proof-Theoretic Tool , 2016, J. Log. Comput..
[5] Natasha Kurtonina. Categorial Inference and Modal Logic , 1998, J. Log. Lang. Inf..
[6] Silvio Ghilardi,et al. Constructive Canonicity in Non-Classical Logics , 1997, Ann. Pure Appl. Log..
[7] Giovanni Sambin,et al. A new proof of Sahlqvist's theorem on modal definability and completeness , 1989, Journal of Symbolic Logic.
[8] Johan van Benthem,et al. Sahlqvist Correspondence for Modal mu-calculus , 2012, Studia Logica.
[9] B. D. ten Cate,et al. Sahlqvist theory for hybrid logic , 2004 .
[10] Minghui Ma,et al. Unified correspondence and proof theory for strict implication , 2016, J. Log. Comput..
[11] Guram Bezhanishvili,et al. Locales, Nuclei, and Dragalin Frames , 2016, Advances in Modal Logic.
[12] Johan van Benthem,et al. Minimal predicates, fixed-points, and definability , 2005, Journal of Symbolic Logic.
[13] M. Harrison-Trainor. Worldizations of Possibility Models , 2016 .
[14] Alessandra Palmigiano,et al. Canonical extensions and relational completeness of some substructural logics* , 2005, Journal of Symbolic Logic.
[15] Willem Conradie,et al. Canonicity results for mu-calculi: an algorithmic approach , 2017, J. Log. Comput..
[16] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .
[17] Willem Conradie,et al. Constructive Canonicity for Lattice-Based Fixed Point Logics , 2016, WoLLIC.
[18] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[19] R. Labrecque. The Correspondence Theory , 1978 .
[20] Lloyd Humberstone,et al. From worlds to possibilities , 1981, J. Philos. Log..
[21] Mai Gehrke,et al. Generalized Kripke Frames , 2006, Stud Logica.
[22] Willem Conradie,et al. Algorithmic correspondence and canonicity for non-distributive logics , 2016, Ann. Pure Appl. Log..
[23] Willem Conradie,et al. On Sahlqvist theory for hybrid logics , 2015, J. Log. Comput..
[24] Wesley H. Holliday,et al. Possibility Frames and Forcing for Modal Logic , 2015 .
[25] Willem Conradie,et al. Algorithmic correspondence for intuitionistic modal mu-calculus , 2015, Theor. Comput. Sci..
[26] Henrik Sahlqvist. Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .
[27] Matthew Harrison-Trainor. First-order possibility Models and Finitary Completeness Proofs , 2019, Rev. Symb. Log..
[28] Willem Conradie,et al. Canonicity and Relativized Canonicity via Pseudo-Correspondence: an Application of ALBA , 2015, ArXiv.
[29] Wesley H. Holliday,et al. Partiality and Adjointness in Modal Logic , 2014, Advances in Modal Logic.
[30] Bjarni Jónsson,et al. On the canonicity of Sahlqvist identities , 1994, Stud Logica.
[31] J.F.A.K. van Benthem,et al. Modal logic and classical logic , 1983 .
[32] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..
[33] Willem Conradie,et al. Categories: How I Learned to Stop Worrying and Love Two Sorts , 2016, WoLLIC.
[34] Brian A. Davey,et al. Introduction to Lattices and Order: Frontmatter , 2002 .
[35] Yde Venema,et al. A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..
[36] Maarten Marx,et al. Hybrid logics with Sahlqvist axioms , 2005, Log. J. IGPL.
[37] Valentin Goranko,et al. Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..
[38] M. Gehrke,et al. Bounded Lattice Expansions , 2001 .
[39] Johan van Benthem,et al. A bimodal perspective on possibility semantics , 2016, J. Log. Comput..
[40] Alessandra Palmigiano,et al. Dual characterizations for finite lattices via correspondence theory for monotone modal logic , 2014, J. Log. Comput..
[41] Willem Conradie,et al. Algorithmic correspondence and canonicity for distributive modal logic , 2012, Ann. Pure Appl. Log..
[42] M. de Rijke,et al. Sahlqvist's theorem for boolean algebras with operators with an application to cylindric algebras , 1995, Stud Logica.
[43] Cecelia Britz. Correspondence theory in many-valued modal logic , 2016 .
[44] Willem Conradie,et al. Constructive Canonicity of Inductive Inequalities , 2016, Log. Methods Comput. Sci..
[45] Alessandra Palmigiano,et al. Sahlqvist theory for impossible worlds , 2016, J. Log. Comput..
[46] Willem Conradie,et al. Unified Correspondence , 2014, Johan van Benthem on Logic and Information Dynamics.
[47] Willem Conradie,et al. Categories: How I Learned to Stop Worrying and Love Two Sorts , 2016, WoLLIC.
[48] Willem Conradie,et al. Algebraic modal correspondence: Sahlqvist and beyond , 2016, J. Log. Algebraic Methods Program..
[49] Alessandra Palmigiano,et al. Jónsson-style canonicity for ALBA-inequalities , 2017, J. Log. Comput..