Algorithmic correspondence and canonicity for possibility semantics

The present paper develops a unified correspondence treatment of the Sahlqvist theory for possibility semantics, extending the results in \cite{Ya16} from Sahlqvist formulas to the strictly larger class of inductive formulas, and from the full possibility frames to filter-descriptive possibility frames. Specifically, we define the possibility semantics version of the algorithm ALBA, and an adapted interpretation of the expanded modal language used in the algorithm. We prove the soundness of the algorithm with respect to both (the dual algebras of) full possibility frames and (the dual algebras of) filter-descriptive possibility frames. We make some comparisons among different semantic settings in the design of the algorithms, and fit possibility semantics into this broader picture. One notable feature of the adaptation of ALBA to possibility frames setting is that the so-called nominal variables, which are interpreted as complete join-irreducibles in the standard setting, are interpreted as regular open closures of "singletons" in the present setting.

[1]  Kentarô Yamamoto,et al.  Results in modal correspondence theory for possibility semantics , 2017, J. Log. Comput..

[2]  Kentarô Yamamoto Modal Correspondence Theory for Possibility Semantics , 2018 .

[3]  Willem Conradie,et al.  Sahlqvist via Translation , 2016, Log. Methods Comput. Sci..

[4]  Alessandra Palmigiano,et al.  Unified Correspondence as a Proof-Theoretic Tool , 2016, J. Log. Comput..

[5]  Natasha Kurtonina Categorial Inference and Modal Logic , 1998, J. Log. Lang. Inf..

[6]  Silvio Ghilardi,et al.  Constructive Canonicity in Non-Classical Logics , 1997, Ann. Pure Appl. Log..

[7]  Giovanni Sambin,et al.  A new proof of Sahlqvist's theorem on modal definability and completeness , 1989, Journal of Symbolic Logic.

[8]  Johan van Benthem,et al.  Sahlqvist Correspondence for Modal mu-calculus , 2012, Studia Logica.

[9]  B. D. ten Cate,et al.  Sahlqvist theory for hybrid logic , 2004 .

[10]  Minghui Ma,et al.  Unified correspondence and proof theory for strict implication , 2016, J. Log. Comput..

[11]  Guram Bezhanishvili,et al.  Locales, Nuclei, and Dragalin Frames , 2016, Advances in Modal Logic.

[12]  Johan van Benthem,et al.  Minimal predicates, fixed-points, and definability , 2005, Journal of Symbolic Logic.

[13]  M. Harrison-Trainor Worldizations of Possibility Models , 2016 .

[14]  Alessandra Palmigiano,et al.  Canonical extensions and relational completeness of some substructural logics* , 2005, Journal of Symbolic Logic.

[15]  Willem Conradie,et al.  Canonicity results for mu-calculi: an algorithmic approach , 2017, J. Log. Comput..

[16]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[17]  Willem Conradie,et al.  Constructive Canonicity for Lattice-Based Fixed Point Logics , 2016, WoLLIC.

[18]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[19]  R. Labrecque The Correspondence Theory , 1978 .

[20]  Lloyd Humberstone,et al.  From worlds to possibilities , 1981, J. Philos. Log..

[21]  Mai Gehrke,et al.  Generalized Kripke Frames , 2006, Stud Logica.

[22]  Willem Conradie,et al.  Algorithmic correspondence and canonicity for non-distributive logics , 2016, Ann. Pure Appl. Log..

[23]  Willem Conradie,et al.  On Sahlqvist theory for hybrid logics , 2015, J. Log. Comput..

[24]  Wesley H. Holliday,et al.  Possibility Frames and Forcing for Modal Logic , 2015 .

[25]  Willem Conradie,et al.  Algorithmic correspondence for intuitionistic modal mu-calculus , 2015, Theor. Comput. Sci..

[26]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[27]  Matthew Harrison-Trainor First-order possibility Models and Finitary Completeness Proofs , 2019, Rev. Symb. Log..

[28]  Willem Conradie,et al.  Canonicity and Relativized Canonicity via Pseudo-Correspondence: an Application of ALBA , 2015, ArXiv.

[29]  Wesley H. Holliday,et al.  Partiality and Adjointness in Modal Logic , 2014, Advances in Modal Logic.

[30]  Bjarni Jónsson,et al.  On the canonicity of Sahlqvist identities , 1994, Stud Logica.

[31]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[32]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..

[33]  Willem Conradie,et al.  Categories: How I Learned to Stop Worrying and Love Two Sorts , 2016, WoLLIC.

[34]  Brian A. Davey,et al.  Introduction to Lattices and Order: Frontmatter , 2002 .

[35]  Yde Venema,et al.  A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..

[36]  Maarten Marx,et al.  Hybrid logics with Sahlqvist axioms , 2005, Log. J. IGPL.

[37]  Valentin Goranko,et al.  Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..

[38]  M. Gehrke,et al.  Bounded Lattice Expansions , 2001 .

[39]  Johan van Benthem,et al.  A bimodal perspective on possibility semantics , 2016, J. Log. Comput..

[40]  Alessandra Palmigiano,et al.  Dual characterizations for finite lattices via correspondence theory for monotone modal logic , 2014, J. Log. Comput..

[41]  Willem Conradie,et al.  Algorithmic correspondence and canonicity for distributive modal logic , 2012, Ann. Pure Appl. Log..

[42]  M. de Rijke,et al.  Sahlqvist's theorem for boolean algebras with operators with an application to cylindric algebras , 1995, Stud Logica.

[43]  Cecelia Britz Correspondence theory in many-valued modal logic , 2016 .

[44]  Willem Conradie,et al.  Constructive Canonicity of Inductive Inequalities , 2016, Log. Methods Comput. Sci..

[45]  Alessandra Palmigiano,et al.  Sahlqvist theory for impossible worlds , 2016, J. Log. Comput..

[46]  Willem Conradie,et al.  Unified Correspondence , 2014, Johan van Benthem on Logic and Information Dynamics.

[47]  Willem Conradie,et al.  Categories: How I Learned to Stop Worrying and Love Two Sorts , 2016, WoLLIC.

[48]  Willem Conradie,et al.  Algebraic modal correspondence: Sahlqvist and beyond , 2016, J. Log. Algebraic Methods Program..

[49]  Alessandra Palmigiano,et al.  Jónsson-style canonicity for ALBA-inequalities , 2017, J. Log. Comput..