On repeated-root multivariable codes over a finite chain ring

In this work we consider repeated-root multivariable codes over a finite chain ring. We show conditions for these codes to be principally generated. We consider a suitable set of generators of the code and compute its minimum distance. As an application we study the relevant example of the generalized Kerdock code in its r-dimensional cyclic version.

[1]  Ana Slgean Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006 .

[2]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[3]  A. A. Nechaev,et al.  Canonical generating system of a monic polynomial ideal over a commutative Artinian chain ring , 2001 .

[4]  Alexey S. Kuzmin,et al.  Linear Codes and Polylinear Recurrences over Finite Rings and Modules , 1999, AAECC.

[5]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[6]  B. R. McDonald Finite Rings With Identity , 1974 .

[7]  A. Nechaev,et al.  Kerdock code in a cyclic form , 1989 .

[8]  Alexander Nechaev,et al.  COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: Linearly representable codes and the Kerdock code over an arbitrary Galois field of characteristic 2 , 1994 .

[9]  Gilberto Bini,et al.  Finite commutative rings and their applications , 2002 .

[10]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[11]  E. Marti´nez-Moro Multivariable Codes Over Finite Chain Rings: Serial Codes , 2006 .

[12]  Anthony M. Kerdock,et al.  Erratum: "A Class of Low-Rate Nonlinear Binary Codes" , 1972, Inf. Control..

[14]  Ulrich Oberst,et al.  Linear Recurring Arrays, Linear Systems and Multidimensional Cyclic Codes over Quasi-Frobenius Rings , 2004 .

[15]  Andrei V. Kelarev,et al.  Generators and weights of polynomial codes , 1997 .

[16]  Andrei V. Kelarev,et al.  ON FINITE PRINCIPAL IDEAL RINGS , 1999 .

[17]  Alexey S. Kuzmin,et al.  Formal Duality of Linearly Presentable Codes over a Galois Field , 1997, AAECC.

[18]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.