Design of an extended area blackbody for calibration of near infrared sky brightness monitor in the Antarctic

The Antarctic Plateau is one of the best places for infrared and submillimeter observations in the world, which has the advantages of high altitude, low water vapor and low atmospheric thermal radiation. It is indispensable for the design of instruments to know the environment of the observatory site in advance, especially the infrared sky background brightness. It determines the ultimate magnitude of infrared observation of the equipment, which is an important reference to evaluate whether a candidate site is suitable for constructing corresponding equipment. We have designed a NIR sky brightness monitor (NISBM) based on InGaAs photodiode, which is used to monitor the J, H and Ks bands of sky background brightness at the Dome A. In the Ks band the signal is sensitive to thermal radiation and temperature fluctuations. So, it needs to be calibrated in real time by a surface source blackbody. According to this requirement, we have designed a surface source blackbody that has the property of low temperature resistance, high emissivity, and high temperature uniformity. The device has a compact structure. The control system and the radiation surface are packaged in the same square house, which is suitable for outfield installation and calibration with low ambient temperature.