A pr 2 00 4 Fedosov quantization in algebraic context
暂无分享,去创建一个
[1] Trey Carpenter. Appendix R , 2011, Perspective and Projective Geometry.
[2] P. Schapira,et al. Stacks of quantization-deformation modules on complex symplectic manifolds , 2003, math/0305171.
[3] M. Kashiwara. D-Modules and Microlocal Calculus , 2002 .
[4] M. Verbitsky,et al. Period Map for Non-Compact Holomorphically Symplectic Manifolds , 2000, math/0005007.
[5] B. Tsygan,et al. Deformations of Symplectic Lie Algebroids, Deformations of Holomorphic Symplectic Structures, and Index Theorems , 1999, math/9906020.
[6] M. Kapranov. Noncommutative geometry based on commutator expansions , 1998, math/9802041.
[7] D. Gaitsgory. Grothendieck topologies and deformation Theory II , 1995, Compositio Mathematica.
[8] P. Deligne. Déformations de l'Algèbre des Fonctions d'une Variété Symplectique: Comparaison entre Fedosov et De Wilde, Lecomte , 1995 .
[9] B. Fedosov. A simple geometrical construction of deformation quantization , 1994 .
[10] A. Beilinson,et al. A proof of Jantzen conjectures , 1993 .
[11] Masaki Kashiwara,et al. Sheaves on Manifolds , 1990 .
[12] M. D. Wilde,et al. Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds , 1983 .
[13] Raoul Bott,et al. Lectures on characteristic classes and foliations , 1972 .
[14] Jean Giraud,et al. Cohomologie non abélienne , 1971 .
[15] A. Grothendieck. Catégories cofibrées additives et complexe cotangent relatif , 1968 .
[16] R. Hartshorne. Residues And Duality , 1966 .