A pr 2 00 4 Fedosov quantization in algebraic context

We consider the problem of quantization of smooth symplectic varieties in the algebro-geometric setting. We show that, under appropriate cohomological assumptions, the Fedosov quantization procedure goes through with minimal changes. The assumptions are satisfied, for example, for affine and for projective varieties. We also give a classification of all possible quantizations.

[1]  Trey Carpenter Appendix R , 2011, Perspective and Projective Geometry.

[2]  P. Schapira,et al.  Stacks of quantization-deformation modules on complex symplectic manifolds , 2003, math/0305171.

[3]  M. Kashiwara D-Modules and Microlocal Calculus , 2002 .

[4]  M. Verbitsky,et al.  Period Map for Non-Compact Holomorphically Symplectic Manifolds , 2000, math/0005007.

[5]  B. Tsygan,et al.  Deformations of Symplectic Lie Algebroids, Deformations of Holomorphic Symplectic Structures, and Index Theorems , 1999, math/9906020.

[6]  M. Kapranov Noncommutative geometry based on commutator expansions , 1998, math/9802041.

[7]  D. Gaitsgory Grothendieck topologies and deformation Theory II , 1995, Compositio Mathematica.

[8]  P. Deligne Déformations de l'Algèbre des Fonctions d'une Variété Symplectique: Comparaison entre Fedosov et De Wilde, Lecomte , 1995 .

[9]  B. Fedosov A simple geometrical construction of deformation quantization , 1994 .

[10]  A. Beilinson,et al.  A proof of Jantzen conjectures , 1993 .

[11]  Masaki Kashiwara,et al.  Sheaves on Manifolds , 1990 .

[12]  M. D. Wilde,et al.  Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds , 1983 .

[13]  Raoul Bott,et al.  Lectures on characteristic classes and foliations , 1972 .

[14]  Jean Giraud,et al.  Cohomologie non abélienne , 1971 .

[15]  A. Grothendieck Catégories cofibrées additives et complexe cotangent relatif , 1968 .

[16]  R. Hartshorne Residues And Duality , 1966 .