A High-Performance Co-Free Electrode for Solid Oxide Cells: La0.7sr0.3cu0.15fe0.85o3-Δ Synthesis and Characterisation

[1]  R. Valenta,et al.  Will global cobalt supply meet demand? The geological, mineral processing, production and geographic risk profile of cobalt , 2023, Resources, Conservation and Recycling.

[2]  D. Clematis,et al.  Solid Oxide Fuel Cells for shipping: A Machine Learning model for early detection of hazardous system deviations , 2023, Process Safety and Environmental Protection.

[3]  Srikanth Gopalan,et al.  Correcting for Inductance in Low-Impedance Electrochemical Systems , 2022, JOM.

[4]  M. Viviani,et al.  Calcium doping in double perovskite SmBa1-xCaxCo2O5+δ to enhance the electrochemical activity of solid oxide cell reversible oxygen electrode , 2022, Journal of Alloys and Compounds.

[5]  F. Chen,et al.  A Novel Self‐Assembled Cobalt‐Free Perovskite Composite Cathode with Triple‐Conduction for Intermediate Proton‐Conducting Solid Oxide Fuel Cells , 2022, Advanced Functional Materials.

[6]  Kongfa Chen,et al.  A critical review of the nano-structured electrodes of solid oxide cells. , 2022, Chemical communications.

[7]  Chaoyang Jin,et al.  Performance and DRT analysis of infiltrated functional cathode based on the anode supported SOFCs with long-term stability , 2022, International Journal of Hydrogen Energy.

[8]  M. Viviani,et al.  Impregnation of microporous SDC scaffold as stable solid oxide cell BSCF-based air electrode , 2021 .

[9]  E. Djurado,et al.  Electrode kinetics of porous Ni-3YSZ cermet operated in fuel cell and electrolysis modes for solid oxide cell application , 2021 .

[10]  Cristiano Nicolella,et al.  On the stabilization and extension of the Distribution of Relaxation Times analysis , 2021 .

[11]  P. Coddet,et al.  Nb and Cu co-doped (La,Sr)(Co,Fe)O3: a stable electrode for solid oxide cells , 2021, RSC advances.

[12]  Jun Zhou,et al.  Electrospun Core–Shell Fibers for High-Efficient Composite Cathode-Based Solid Oxide Fuel Cells , 2021 .

[13]  xinfang Jin,et al.  Precautions of Using Three-Electrode Configuration to Measure Electrode Overpotential in Solid Oxide Electrochemical Cells: Insights from Finite Element Modeling , 2020 .

[14]  I. Shakir,et al.  Cobalt free LaxSr1-xFe1-yCuyO3-δ (x= 0.54, 0.8, y = 0.2, 0.4) perovskite structured cathode for SOFC , 2020 .

[15]  M. Viviani,et al.  Infiltrated Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Based Electrodes as Anodes in Solid Oxide Electrolysis Cells , 2020, Energies.

[16]  Yonghong Cheng,et al.  Exsolution of Cu nanoparticles in (LaSr)0.9Fe0.9Cu0.1O4 Ruddlesden-Popper oxide as symmetrical electrode for solid oxide cells , 2020 .

[17]  H. Frandsen,et al.  Reversible solid-oxide cells for clean and sustainable energy , 2019, Clean Energy.

[18]  J. Sunarso,et al.  Cobalt‐Free Perovskite Cathodes for Solid Oxide Fuel Cells , 2019, ChemElectroChem.

[19]  M. Viviani,et al.  Electrocatalytic activity of perovskite-based cathodes for solid oxide fuel cells , 2019, International Journal of Hydrogen Energy.

[20]  E. Wachsman,et al.  Nanointegrated, High-Performing Cobalt-Free Bismuth-Based Composite Cathode for Low-Temperature Solid Oxide Fuel Cells. , 2018, ACS applied materials & interfaces.

[21]  Zongping Shao,et al.  Highly Active and Stable Cobalt-Free Hafnium-doped SrFe0.9Hf0.1O3−δ Perovskite Cathode for Solid Oxide Fuel Cells , 2018 .

[22]  L. Liotta,et al.  Infiltration, Overpotential and Ageing Effects on Cathodes for Solid Oxide Fuel Cells: La0.6Sr0.4Co0.2Fe0.8O3-δ versus Ba0.5Sr0.5Co0.8Fe0.2O3-δ , 2017 .

[23]  M. Panizza,et al.  Characterisation of La0.6Sr0.4Co0.2Fe0.8O3-δ – Ba0.5Sr0.5Co0.8Fe0.2O3-δ composite as cathode for solid oxide fuel cells , 2017 .

[24]  A. Sanson,et al.  Understanding the electrochemical behaviour of LSM-based SOFC cathodes. Part I - Experimental and electrochemical , 2017 .

[25]  Zongping Shao,et al.  Enhancing Electrode Performance by Exsolved Nanoparticles: A Superior Cobalt-Free Perovskite Electrocatalyst for Solid Oxide Fuel Cells. , 2016, ACS applied materials & interfaces.

[26]  L. Mogni,et al.  La/Ba-based cobaltites as IT-SOFC cathodes: a discussion about the effect of crystal structure and microstructure on the O2-reduction reaction , 2016 .

[27]  F. Chen,et al.  La 0.4 Bi 0.4 Sr 0.2 FeO 3-δ as Cobalt-free Cathode for Intermediate-Temperature Solid Oxide Fuel Cell , 2016 .

[28]  R. Faccio,et al.  Synthesis and characterization of La0.6Sr0.4Fe0.8Cu0.2O3−δ oxide as cathode for Intermediate Temperature Solid Oxide Fuel Cells , 2015 .

[29]  S. Licoccia,et al.  La 0.8 Sr 0.2 Fe 0.8 Cu 0.2 O 3-δ as “cobalt-free” cathode for La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O 3-δ electrolyte , 2014 .

[30]  S. Senthil Kumar,et al.  Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review , 2014 .

[31]  Yan Li,et al.  La0.6Sr0.4Fe0.8Cu0.2O3−δ perovskite oxide as cathode for IT-SOFC , 2012 .

[32]  A. Caneschi,et al.  Crystal structures and magnetic properties of strontium and copper doped lanthanum ferrites , 2012 .

[33]  M. Rieu,et al.  Characterization and Comparison of Different Cathode Materials for SC‐SOFC: LSM, BSCF, SSC, and LSCF , 2012 .

[34]  Lei Cheng,et al.  Selection of cathode contact materials for solid oxide fuel cells , 2011 .

[35]  Vincent Vivier,et al.  Determination of effective capacitance and film thickness from constant-phase-element parameters , 2010 .

[36]  Lucun Guo,et al.  Electrical conductivity, thermal expansion and electrochemical properties of Fe-doped La0.7Sr0.3CuO3−δ cathodes for solid oxide fuel cells , 2009 .

[37]  G. Marcì,et al.  Citrate-nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach , 2009 .

[38]  Z. Lü,et al.  Performance of an anode-supported SOFC with anode functional layers , 2008 .

[39]  Xiujuan Sun,et al.  Use of a catalyst layer for anode-supported SOFCs running on ethanol fuel , 2008 .

[40]  K. Wiik,et al.  Structural instability of cubic perovskite BaxSr1 − xCo1 − yFeyO3 − δ , 2008 .

[41]  J. Vohs,et al.  The Stability of LSF-YSZ Electrodes Prepared by Infiltration , 2007 .

[42]  T. Nagai,et al.  Relationship between cation substitution and stability of perovskite structure in SrCoO3- δ-based mixed conductors , 2007 .

[43]  M. Mori,et al.  Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents , 2005 .

[44]  V. Kharton,et al.  Transport properties of solid oxide electrolyte ceramics: a brief review , 2004 .

[45]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[46]  C. Rossignol,et al.  Cathode Materials for Reduced-Temperature SOFCs , 2003 .

[47]  H. Inaba,et al.  Thermal expansion of Gd-doped ceria and reduced ceria , 2000 .

[48]  J. Winkler,et al.  Geometric Requirements of Solid Electrolyte Cells with a Reference Electrode , 1998 .

[49]  Jerome B. Hastings,et al.  Rietveld refinement of Debye–Scherrer synchrotron X‐ray data from Al2O3 , 1987 .

[50]  V. Thangadurai,et al.  Recent Advances, Practical Challenges, and Perspectives of Intermediate Temperature Solid Oxide Fuel Cell Cathodes , 2022, Journal of Materials Chemistry A.

[51]  Juan Rodriguez-Carvaj,et al.  Recent advances in magnetic structure determination neutron powder diffraction , 1993 .