A bimodal perspective on possibility semantics

In this paper we develop a bimodal perspective on possibility semantics, a framework allowing partiality of states that provides an alternative modeling for classical propositional and modal logics [Humberstone, 1981, Holliday, 2015]. In particular, we define a full and faithful translation of the basic modal logic K over possibility models into a bimodal logic of partial functions over partial orders, and we show how to modulate this analysis by varying across logics and model classes that have independent topological motivations. This relates the two realms under comparison both semantically and syntactically at the level of derivations. Moreover, our analysis clarifies the interplay between the complexity of translations and axiomatizations of the corresponding logics: adding axioms to the target bimodal logic simplifies translations, or vice versa, complex translations can simplify frame conditions. We also investigate a transfer of first-order correspondence theory between possibility semantics and its bimodal counterpart. Finally, we discuss the conceptual trade-o between giving translations and giving new semantics for logical systems, and we identify a number of further research directions to which our analysis gives rise.

[1]  Johan van Benthem,et al.  The information in intuitionistic logic , 2009, Synthese.

[2]  Wesley H. Holliday,et al.  Partiality and Adjointness in Modal Logic , 2014, Advances in Modal Logic.

[3]  Johan van Benthem,et al.  Modal Logics of Space , 2007, Handbook of Spatial Logics.

[4]  Steven Givant,et al.  Introduction to Boolean Algebras , 2008 .

[5]  J.F.A.K. van Benthem,et al.  Modal Logic as a Theory of Information , 1996 .

[6]  Brian F. Chellas Modal Logic: Normal systems of modal logic , 1980 .

[7]  F. Wolter,et al.  Intuitionistic Modal Logics as Fragments of Classical Bimodal Logics , 1997 .

[8]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .

[9]  Anil Nerode,et al.  Modal Logics and Topological Semantics for Hybrid Systems , 1997 .

[10]  Johan van Benthem,et al.  Points and Periods , 1991 .

[11]  K. Fine Vagueness, truth and logic , 1975, Synthese.

[12]  Guram Bezhanishvili,et al.  Locales, Nuclei, and Dragalin Frames , 2016, Advances in Modal Logic.

[13]  Philip Kremer,et al.  Dynamic topological logic , 2005, Ann. Pure Appl. Log..

[14]  Helle Hvid Hansen,et al.  Monotonic modal logics , 2003 .

[15]  Kentarô Yamamoto Modal Correspondence Theory for Possibility Semantics , 2018 .

[16]  K. Dosen,et al.  Models for normal intuitionistic modal logics , 1984 .

[17]  Willem Conradie,et al.  Unified Correspondence , 2014, Johan van Benthem on Logic and Information Dynamics.

[18]  Alfred Tarski,et al.  Some theorems about the sentential calculi of Lewis and Heyting , 1948, The Journal of Symbolic Logic.

[19]  Peter Roper,et al.  Intervals and tenses , 1980, J. Philos. Log..

[20]  Robert Goldblatt,et al.  Semantic analysis of orthologic , 1974, J. Philos. Log..

[21]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[22]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[23]  Ivano Ciardelli,et al.  Inquisitive Semantics and Intermediate Logics. , 2009 .

[24]  M. Harrison-Trainor Worldizations of Possibility Models , 2016 .

[25]  D. Gabbay,et al.  Many-Dimensional Modal Logics: Theory and Applications , 2003 .

[26]  Gisèle Fischer Servi,et al.  Semantics for a Class of Intuitionistic Modal Calculi , 1980 .

[27]  Thomas Jech,et al.  About the Axiom of Choice , 1973 .

[28]  G. Gentzen Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .

[29]  H. M. Macneille,et al.  Partially ordered sets , 1937 .

[30]  Felix Kaufmann Truth and Logic , 1940 .

[31]  Tadeusz Prucnal,et al.  On two problems of Harvey Friedman , 1979 .

[32]  Valentin B. Shehtman,et al.  Modal counterparts of Medvedev logic of finite problems are not finitely axiomatizable , 1990, Stud Logica.

[33]  Wesley H. Holliday,et al.  On the Modal Logic of Subset and Superset: Tense Logic over Medvedev Frames , 2017, Stud Logica.

[34]  A. Tarski Der Aussagenkalkül und die Topologie , 1938 .

[35]  Matthew Harrison-Trainor First-order possibility Models and Finitary Completeness Proofs , 2019, Rev. Symb. Log..

[36]  F. Wolter,et al.  The relation between intuitionistic and classical modal logics , 1997 .

[37]  Lloyd Humberstone,et al.  From worlds to possibilities , 1981, J. Philos. Log..

[38]  Duminda Wijesekera,et al.  Constructive Modal Logics I , 1990, Ann. Pure Appl. Log..

[39]  H. Rasiowa,et al.  Logic at work : essays dedicated to the memory of Helena Rasiowa , 1999 .

[40]  G. Gentzen Über das Verhältnis zwischen intuitionistischer und klassischer Arithmetik , 1974 .

[41]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[42]  Lloyd Humberstone,et al.  Interval semantics for tense logic: Some remarks , 1979, Journal of Philosophical Logic.

[43]  Guram Bezhanishvili,et al.  Glivenko Type Theorems for Intuitionistic Modal Logics , 2001, Stud Logica.

[44]  Johan van Benthem,et al.  Modal reduction principles , 1976, Journal of Symbolic Logic.

[45]  Alfred Tarski,et al.  Logic, Semantics, Metamathematics: Papers from 1923 to 1938 , 1958 .

[46]  H. Kamp Events, Instants and Temporal Reference , 1979 .

[47]  G. Servi On modal logic with an intuitionistic base , 1977 .

[48]  Wesley H. Holliday,et al.  Possibility Frames and Forcing for Modal Logic , 2015 .