A bimodal perspective on possibility semantics
暂无分享,去创建一个
Johan van Benthem | Wesley H. Holliday | Nick Bezhanishvili | J. Benthem | W. Holliday | N. Bezhanishvili
[1] Johan van Benthem,et al. The information in intuitionistic logic , 2009, Synthese.
[2] Wesley H. Holliday,et al. Partiality and Adjointness in Modal Logic , 2014, Advances in Modal Logic.
[3] Johan van Benthem,et al. Modal Logics of Space , 2007, Handbook of Spatial Logics.
[4] Steven Givant,et al. Introduction to Boolean Algebras , 2008 .
[5] J.F.A.K. van Benthem,et al. Modal Logic as a Theory of Information , 1996 .
[6] Brian F. Chellas. Modal Logic: Normal systems of modal logic , 1980 .
[7] F. Wolter,et al. Intuitionistic Modal Logics as Fragments of Classical Bimodal Logics , 1997 .
[8] Saul A. Kripke,et al. Semantical Analysis of Intuitionistic Logic I , 1965 .
[9] Anil Nerode,et al. Modal Logics and Topological Semantics for Hybrid Systems , 1997 .
[10] Johan van Benthem,et al. Points and Periods , 1991 .
[11] K. Fine. Vagueness, truth and logic , 1975, Synthese.
[12] Guram Bezhanishvili,et al. Locales, Nuclei, and Dragalin Frames , 2016, Advances in Modal Logic.
[13] Philip Kremer,et al. Dynamic topological logic , 2005, Ann. Pure Appl. Log..
[14] Helle Hvid Hansen,et al. Monotonic modal logics , 2003 .
[15] Kentarô Yamamoto. Modal Correspondence Theory for Possibility Semantics , 2018 .
[16] K. Dosen,et al. Models for normal intuitionistic modal logics , 1984 .
[17] Willem Conradie,et al. Unified Correspondence , 2014, Johan van Benthem on Logic and Information Dynamics.
[18] Alfred Tarski,et al. Some theorems about the sentential calculi of Lewis and Heyting , 1948, The Journal of Symbolic Logic.
[19] Peter Roper,et al. Intervals and tenses , 1980, J. Philos. Log..
[20] Robert Goldblatt,et al. Semantic analysis of orthologic , 1974, J. Philos. Log..
[21] S. Shelah,et al. Annals of Pure and Applied Logic , 1991 .
[22] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[23] Ivano Ciardelli,et al. Inquisitive Semantics and Intermediate Logics. , 2009 .
[24] M. Harrison-Trainor. Worldizations of Possibility Models , 2016 .
[25] D. Gabbay,et al. Many-Dimensional Modal Logics: Theory and Applications , 2003 .
[26] Gisèle Fischer Servi,et al. Semantics for a Class of Intuitionistic Modal Calculi , 1980 .
[27] Thomas Jech,et al. About the Axiom of Choice , 1973 .
[28] G. Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .
[29] H. M. Macneille,et al. Partially ordered sets , 1937 .
[30] Felix Kaufmann. Truth and Logic , 1940 .
[31] Tadeusz Prucnal,et al. On two problems of Harvey Friedman , 1979 .
[32] Valentin B. Shehtman,et al. Modal counterparts of Medvedev logic of finite problems are not finitely axiomatizable , 1990, Stud Logica.
[33] Wesley H. Holliday,et al. On the Modal Logic of Subset and Superset: Tense Logic over Medvedev Frames , 2017, Stud Logica.
[34] A. Tarski. Der Aussagenkalkül und die Topologie , 1938 .
[35] Matthew Harrison-Trainor. First-order possibility Models and Finitary Completeness Proofs , 2019, Rev. Symb. Log..
[36] F. Wolter,et al. The relation between intuitionistic and classical modal logics , 1997 .
[37] Lloyd Humberstone,et al. From worlds to possibilities , 1981, J. Philos. Log..
[38] Duminda Wijesekera,et al. Constructive Modal Logics I , 1990, Ann. Pure Appl. Log..
[39] H. Rasiowa,et al. Logic at work : essays dedicated to the memory of Helena Rasiowa , 1999 .
[40] G. Gentzen. Über das Verhältnis zwischen intuitionistischer und klassischer Arithmetik , 1974 .
[41] Michael Zakharyaschev,et al. Modal Logic , 1997, Oxford logic guides.
[42] Lloyd Humberstone,et al. Interval semantics for tense logic: Some remarks , 1979, Journal of Philosophical Logic.
[43] Guram Bezhanishvili,et al. Glivenko Type Theorems for Intuitionistic Modal Logics , 2001, Stud Logica.
[44] Johan van Benthem,et al. Modal reduction principles , 1976, Journal of Symbolic Logic.
[45] Alfred Tarski,et al. Logic, Semantics, Metamathematics: Papers from 1923 to 1938 , 1958 .
[46] H. Kamp. Events, Instants and Temporal Reference , 1979 .
[47] G. Servi. On modal logic with an intuitionistic base , 1977 .
[48] Wesley H. Holliday,et al. Possibility Frames and Forcing for Modal Logic , 2015 .