Greedy sampling of distributed parameters in the reduced-basis method by numerical optimization

In the present paper the authors study second-order elliptic parametric partial differential equations (μPDEs), where the parameters are scalars or distributed functions. By utilizing a modified greedy algorithm a reduced-basis approximation is derived. This new strategy combines the classical greedy algorithm with techniques from PDE constrained optimization. Numerical examples for the Graetz problem illustrate the efficiency of the strategy to handle not only scalar, but also distributed parameter functions.

[1]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[2]  Jan S. Hesthaven,et al.  A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations , 2008 .

[3]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[4]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[5]  K. Hoffmann,et al.  Optimal Control of Partial Differential Equations , 1991 .

[6]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[7]  Benjamin Stamm,et al.  EFFICIENT GREEDY ALGORITHMS FOR HIGH-DIMENSIONAL PARAMETER SPACES WITH APPLICATIONS TO EMPIRICAL INTERPOLATION AND REDUCED BASIS METHODS ∗ , 2014 .

[8]  V. Volpert Elliptic Partial Differential Equations. Volume I. Fredholm theory of elliptic problems in unbounded domains , 2011 .

[9]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .

[10]  Bernard Haasdonk,et al.  Adaptive Basis Enrichment for the Reduced Basis Method Applied to Finite Volume Schemes , 2008 .

[11]  Oliver Lass,et al.  Adaptive POD basis computation for parametrized nonlinear systems using optimal snapshot location , 2014, Comput. Optim. Appl..

[12]  Stefan Volkwein,et al.  Greedy Sampling Using Nonlinear Optimization , 2014 .

[13]  N. Krylov Parabolic and elliptic equations in ^{1,}_{} and ^{}_{} , 2008 .

[14]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[15]  Benjamin Stamm,et al.  Locally Adaptive Greedy Approximations for Anisotropic Parameter Reduced Basis Spaces , 2012, SIAM J. Sci. Comput..

[16]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[17]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[18]  A. Patera,et al.  A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .

[19]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[20]  Vitaly Volpert,et al.  Elliptic Partial Differential Equations , 2011 .

[21]  N. Krylov,et al.  Lectures on Elliptic and Parabolic Equations in Holder Spaces , 1996 .

[22]  Bernard Haasdonk,et al.  Adaptive Reduced Basis Methods for Nonlinear Convection–Diffusion Equations , 2011 .

[23]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[24]  F. Lin,et al.  Elliptic Partial Differential Equations , 2000 .

[25]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .